【題目】如圖,四邊形ABCD中,AD∥BC,AC平分∠BAD,∠ABC=60°,E為AD上一點,AE=2,DE=4,P為AC 上一點,則△PDE周長的最小值為_______.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O與CE相切于點C,CE交AB的延長線于點E,直徑AB=18,∠A=30°,弦CD⊥AB,垂足為點F,連接AC,OC,則下列結(jié)論正確的是______.(寫出所有正確結(jié)論的序號)
①;
②扇形OBC的面積為π;
③△OCF∽△OEC;
④若點P為線段OA上一動點,則APOP有最大值20.25.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,利用直尺和圓規(guī),分別以、為圓心,相同的長度為半徑(半徑大于線段的一半)作四段弧,分別交于、兩點,連接、,分別交、于、,連接、,則四邊形為( )
A.梯形B.平行四邊形C.矩形D.菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AC,∠BAD=90°,延長AD,BC交于點F.過點D作⊙O的切線,交BF于點E.
(1)求證:DE=EF;
(2)若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB經(jīng)過⊙O的圓心O,交⊙O于A、C兩點,BC=1,AD為⊙O的弦,連結(jié)BD,∠BAD=∠ABD=30°.
(1)求證:直線BD是⊙O的切線;
(2)求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市以20元/kg的價格購進(jìn)一批商品進(jìn)行銷售,根據(jù)以往的銷售經(jīng)驗及對市場行情的調(diào)研,該超市得到日銷售量y(kg)與銷售價格x(元/kg)之間的關(guān)系,部分?jǐn)?shù)據(jù)如下表:
銷售價格x(元/kg) | 25 | 30 | 35 | 40 | … |
日銷售量y(kg) | 1000 | 800 | 600 | 400 | … |
(1)根據(jù)表中的數(shù)據(jù),用所學(xué)過的函數(shù)知識確定y與x之間的函數(shù)關(guān)系式;
(2)超市應(yīng)如何確定銷售價格,才能使日銷售利潤W(元)最大?W最大值為多少?
(3)供貨商為了促銷,決定給予超市a元/kg的補(bǔ)貼,但希望超市在30≤x≤35時,最大利潤不超過10240元,求a的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,點D、F分別在邊AB、AC上,請直接寫出線段BD、CF的數(shù)量和位置關(guān)系;
(2)拓展探究:如圖2,當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)銳角θ時,上述結(jié)論還成立嗎?若成立,請給予證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著新冠病毒在全世界蔓延,口罩成為緊缺物資,甲、乙兩家工廠積極響應(yīng)政府號召,準(zhǔn)備跨界投資生產(chǎn)口罩.根據(jù)市場調(diào)查,甲、乙兩家工廠計劃每天各生產(chǎn)6萬片口罩,但由于轉(zhuǎn)型條件不同,其生產(chǎn)的成本不一樣,甲工廠計劃每生產(chǎn)1萬片口罩的成本為0.6萬元,乙工廠計劃每生產(chǎn)1萬片口罩的成本為0.8萬元.
(1)按照計劃,甲、乙兩家工廠共生產(chǎn)2000萬片口罩,且甲工廠生產(chǎn)口罩的總成本不高于乙工廠生產(chǎn)口罩的總成本的,求甲工廠最多可生產(chǎn)多少萬片的口罩?
(2)實際生產(chǎn)時,甲工廠完全按計劃執(zhí)行,但乙工廠的生產(chǎn)情況發(fā)生了一些變化.乙工廠實際每天比計劃少生產(chǎn)0.5m萬片口罩,每生產(chǎn)1萬片口罩的成本比計劃多0.2m萬元,最終乙工廠實際每天生產(chǎn)口罩的成本比計劃多1.6萬元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,二次函數(shù)的圖象交x軸于點A,B,交y軸于點C,已知A的橫坐標(biāo)為.
(1)求B點的橫坐標(biāo)和直線的解析式;
(2)二次函數(shù)的圖象有一點D,把點D向左平移m()個單位,將與該二次函數(shù)圖象上的另一點重合,將向上移動5個單位后,恰好落在直線上,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com