【題目】如圖,AB是⊙O的直徑,C 是⊙O上一點(diǎn),過點(diǎn)C 作⊙O的切線,交BA的延長線交于點(diǎn)D,過點(diǎn)B BEBA,交DC延長線于點(diǎn)E,連接OE,交⊙O于點(diǎn)F,交BC于點(diǎn)H,連接AC

1)求證:∠ECB=EBC

2)連接BF,CF,若BF=5,sinFBC=,求AC的長.

【答案】1)見詳解;(2

【解析】

1)先證EB為⊙O的切線,再利用切線長定理即可證得∠ECB=∠EBC

2)先由BF5,sin∠FBC求得FHHB的長,再由Rt△BOH的勾股定理求得OH長,最后利用中位線即可求得AC的長.

1)證明:∵BEBAAB是⊙O的直徑,

BE是⊙O的切線,

∵CE是⊙O的切線,

BECE,

∠ECB∠EBC;

2)解:如圖,連接OC,

BECE,OBOC

OE垂直平分BC,

∠BHF∠BHO90°,點(diǎn)HBC的中點(diǎn),

∴在Rt△BHF中,sin∠FBC

BF5

FH3,

BH,

設(shè)OHx,則OBOFx3,

Rt△OHB中,OH2BH2OB2

x242=(x32,

解得x

OH

∵點(diǎn)O、H分別為ABCB的中點(diǎn),

OH△ABC的中位線,

∴AC2OH

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系x0y中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(6n).線段OA=5,Ex軸上一點(diǎn),且sinAOE=

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“長跑”是中考體育考試項(xiàng)目之一.某中學(xué)為了解九年級學(xué)生“長跑”的情況,隨機(jī)抽取部分九年級學(xué)生,測試其長跑成績(男子1000米,女子800米),按長跑的時(shí)間的長短依次分為AB,C,D四個(gè)等級進(jìn)行統(tǒng)計(jì),并繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:

1)在這次調(diào)查中共抽取了  名學(xué)生,扇形統(tǒng)計(jì)圖中,D類所對應(yīng)的扇形圓心角大小為 ;

2)所抽取學(xué)生“長跑”測試成績的中位數(shù)會落在 等級;

3)若該校九年級共有900名學(xué)生,請你估計(jì)該校C等級的學(xué)生約在多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中雅培粹學(xué)校舉辦運(yùn)動(dòng)會,全校有3000名同學(xué)報(bào)名參加校運(yùn)會,為了解各類運(yùn)動(dòng)賽事的分布情況,從中抽取了部分同學(xué)進(jìn)行統(tǒng)計(jì):A.田徑類,B.球類,C.團(tuán)體類,D.其他,并將統(tǒng)計(jì)結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.

1)這次統(tǒng)計(jì)共抽取了 位同學(xué),扇形統(tǒng)計(jì)圖中的 ,的度數(shù)是 ;

2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)估計(jì)全校共多少學(xué)生參加了球類運(yùn)動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠PAQ=36°,點(diǎn)B為射線AQ上一固定點(diǎn),按以下步驟作圖:①分別以A,B為圓心,大于AB的長為半徑畫弧,相交于兩點(diǎn)M,N;②作直線MN交射線AP 于點(diǎn)D,連接 BD;③以B為圓心,BA長為半徑畫弧,交射線AP 于點(diǎn)C; 根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是(

A.CDB=72°B.ADB∽△ABCC.CDAD=21D.ABC=3ACB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下的定義:若⊙C上存在兩個(gè)點(diǎn)A、B,使得∠APB60°,則稱P為⊙C的可視點(diǎn).

1)當(dāng)⊙O的半徑為1時(shí),

①在點(diǎn)、E(1,1)、F(30)中,⊙O的可視點(diǎn)是______

②過點(diǎn)M(4,0)作直線ly=kx+b,若直線l上存在⊙O的可視點(diǎn),求b的取值范圍;

2)若T(t0),⊙T的半徑為1,直線y=上存在⊙T的可視點(diǎn),且所有可視點(diǎn)構(gòu)成的線段長度為n,若,直接寫出t 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計(jì)共抽查了多少名學(xué)生?在扇形統(tǒng)計(jì)圖中,表示" "的扇形圓心角的度數(shù)是多少;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)該校共有1500名學(xué)生,請估計(jì)該校最喜歡用 “微信”進(jìn)行溝通的學(xué)生大約有多少名?

(4)某天甲、乙兩名同學(xué)都想從微信"、""電話"三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABO是正三角形,CDAB,把△ABO繞△OCD的內(nèi)心P旋轉(zhuǎn)180°得到△EFG

1)在圖中畫出點(diǎn)P和△EFG,保留畫圖痕跡,簡要說明理由

2)若AO3CD2,求A點(diǎn)運(yùn)動(dòng)到E點(diǎn)路徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知

求樓間距AB;

若男生樓共30層,層高均為3m,請通過計(jì)算說明多少層以下會受到擋光的影響?參考數(shù)據(jù):,,,,,

查看答案和解析>>

同步練習(xí)冊答案