【題目】如圖,二次函數(shù)yax2+bx+c的圖象如圖所示,以下結(jié)論:①abc0 b2-4ac0 ; 2a+b0 ;④a+b+c0,其中正確的個數(shù)(

A.1B.2C.3D.4

【答案】B

【解析】

由拋物線開口向上,得到a大于0,再由對稱軸在y軸右側(cè)得到ab異號,可得出b小于0,由拋物線與y軸交于負(fù)半軸,得到c小于0,可得出abc大于0,判斷出選項①正確;由拋物線與x軸交于兩點,得到根的判別式大于0;利用對稱軸公式表示出對稱軸,由圖象得到對稱軸小于1,再由a大于0,利用不等式的基本性質(zhì)變形即可得到2a+b的正負(fù);由圖象可得出當(dāng)x=1時對應(yīng)二次函數(shù)圖象上的點在x軸下方,即將x=1代入二次函數(shù)解析式,得到a+b+c的正負(fù).

解:∵拋物線開口向上,對稱軸在y軸右側(cè),且拋物線與y軸交于負(fù)半軸,
a0,b0c0,
abc0,故選項①正確;
∵拋物線與x軸有兩個交點,
b2-4ac0,故選項②錯誤;
∵由圖象得:對稱軸為直線x=1,且a0,
2a+b0,故選項③正確;
由圖象可得:當(dāng)x=1時,對應(yīng)的函數(shù)圖象上的點在x軸下方,
∴將x=1代入yax2+bx+c得:y=a+b+c0,故選項④錯誤,

綜上,正確的選項有:①③共2個.
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是非零實數(shù),,在同一平面直角坐標(biāo)系中,二次函數(shù)與一次函數(shù)的大致圖象不可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形的兩個內(nèi)角αβ滿足2α+β=90°,那么我們稱這樣的三角形為準(zhǔn)互余三角形”.

(1)若ABC準(zhǔn)互余三角形”,C>90°,A=60°,則∠B=   °;

(2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明ABD準(zhǔn)互余三角形.試問在邊BC上是否存在點E(異于點D),使得ABE也是準(zhǔn)互余三角形?若存在,請求出BE的長;若不存在,請說明理由.

(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準(zhǔn)互余三角形,求對角線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+cx軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標(biāo)為(1,0),點B的坐標(biāo)為(0,4),已知點Em,0)是線段DO上的動點,過點EPEx軸交拋物線于點P,交BC于點G,交BD于點H

1)求該拋物線的解析式;

2)當(dāng)點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;

3)在(2)的條件下,是否存在這樣的點P,使得以P、BG為頂點的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,橫坐標(biāo)為a的點A在反比例函數(shù)y1(x0)的圖象上,點B與點A關(guān)于原點O對稱,一次函數(shù)y2mx+n的圖象經(jīng)過點B.

(1)設(shè)a2,點C(4,2)在函數(shù)y1y2的圖象上.分別求函數(shù)y1,y2的表達(dá)式.

(2)如圖,設(shè)函數(shù)y1y2的圖象相交于點C,點C的橫坐標(biāo)為3a,△ABC的面積為16,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價為20/千克,售價不低于20/千克,且不超過32/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.

銷售量y(千克)

34.8

32

29.6

28

售價x(元/千克)

22.6

24

25.2

26

1)某天這種水果的售價為23.5/千克,則當(dāng)天該水果的銷售量 千克.

2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?

3)當(dāng)售價定為多少元時,當(dāng)天銷售這種水果獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=mx2-16mx+48m(m0)x軸交于A、B兩點(B在點A左側(cè)),與y軸交于點C,點D是拋物線上的一個動點,且位于第四象限,連接OD、BD、ACAD,延長ADy軸于點E.

(1)若△OAC為等腰直角三角形,求m的值.

(2)若對任意m0C、E兩點總關(guān)于原點對稱,求點D的坐標(biāo)(用含m的式子表示).

(3)當(dāng)點D運動到某一位置時,恰好使得∠ODB=OAD,且點D為線段AE的中點,此時對于該拋物線上任意一點P(x0,y0)總有n≥4my0212y0-50成立,求實數(shù)n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+ca≠0,a、bc為常數(shù))上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:

x

……

3

2

1

0

1

2

……

y

……

4

4

m

0

……

則下列結(jié)論中:①拋物線的對稱軸為直線x=﹣1;②m;③當(dāng)﹣4x2時,y0;④方程ax2+bx+c40的兩根分別是x1=﹣2,x20,其中正確的個數(shù)有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,△AOB的頂點均在格點上,

(1)將△AOB向右平移4個單位長度得到△A1O1B1,請畫出△A1O1B1

(2)以點A為對稱中心,請畫出 AOB關(guān)于點A成中心對稱的 A O2 B2,并寫點B2的坐標(biāo);

(3)以原點O為旋轉(zhuǎn)中心,請畫出把AOB按順時針旋轉(zhuǎn)90°的圖形A2 O B3

查看答案和解析>>

同步練習(xí)冊答案