【題目】
(1)計(jì)算: ﹣(﹣1)2+(﹣2012)0
(2)因式分解:m3n﹣9mn.

【答案】
(1)解: ﹣(﹣1)2+(﹣2012)0

=3﹣1+1

=3


(2)解:m3n﹣9mn

=mn(m2﹣9)

=mn(m+3)(m﹣3)


【解析】(1)根據(jù)算術(shù)平方根的定義,乘方的定義,以及任何非0數(shù)的0次冪等于1解答;(2)先提取公因式mn,再對(duì)余下的多項(xiàng)式利用平方差公式繼續(xù)分解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識(shí),掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對(duì)實(shí)數(shù)的運(yùn)算的理解,了解先算乘方、開方,再算乘除,最后算加減,如果有括號(hào),先算括號(hào)里面的,若沒有括號(hào),在同一級(jí)運(yùn)算中,要從左到右進(jìn)行運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD=BC,AC=BD.
(1)求證:△ADB≌△BCA;
(2)OA與OB相等嗎?若相等,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC,BD為⊙O的直徑,AD=6,則DC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點(diǎn),連接DE并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)F,點(diǎn)G在邊BC上,且∠GDF=∠ADF.
(1)求證:△ADE≌△BFE;
(2)連接EG,判斷EG與DF的位置關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊△ABC的邊長(zhǎng)為2,P是BC邊上的任一點(diǎn)(與B、C不重合),連接AP,以AP為邊向兩側(cè)作等邊△APD和等邊△APE,分別與邊AB、AC交于點(diǎn)M、N(如圖1).

(1)求證:AM=AN;
(2)設(shè)BP=x.
①若BM= ,求x的值;
②求四邊形ADPE與△ABC重疊部分的面積S與x之間的函數(shù)關(guān)系式以及S的最小值;
③連接DE分別與邊AB、AC交于點(diǎn)G、H(如圖2).當(dāng)x為何值時(shí),∠BAD=15°?此時(shí),以DG、GH、HE這三條線段為邊構(gòu)成的三角形是什么特殊三角形,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.

(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E為BC上一點(diǎn),∠BDE=∠DBC.
(1)求證:DE=EC;
(2)若AD= BC,試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),下列說法中不正確的是( 。

A.DE= BC
B.
C.△ADE∽△ABC
D.SADE:SABC=1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是矗立在高速公路水平地面上的交通警示牌,經(jīng)測(cè)量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為米(結(jié)果精確到0.1米,參考數(shù)據(jù): =1.41, =1.73).

查看答案和解析>>

同步練習(xí)冊(cè)答案