【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A、C分別在x、y軸的正半軸上,頂點B的坐標(biāo)為(4,2).點M是邊BC上的一個動點(不與B、C重合),反比例函數(shù)y=(k>0,x>0)的圖象經(jīng)過點M且與邊AB交于點N,連接MN.
(1)當(dāng)點M是邊BC的中點時.
①求反比例函數(shù)的表達式;
②求△OMN的面積;
(2)在點M的運動過程中,試證明:是一個定值.
【答案】(1)①y=;②3;(2)證明見解析.
【解析】
(1)①由矩形的性質(zhì)及M是BC中點得出M(2,4),據(jù)此可得反比例函數(shù)解析式;
②先求出點N的坐標(biāo),從而得出CM=BM=2,AN=BN=1,再根據(jù)S△OMN=S矩形OABC﹣S△OAN﹣S△COM﹣S△BMN計算可得.
(2)設(shè)M(a,2),據(jù)此知反比例函數(shù)解析式為y=,求出N(4,),從而得BM=4﹣a,BN=2﹣,再代入計算可得.
(1)①∵點B(4,2),且四邊形OABC是矩形,
∴OC=AB=2,BC=OA=4,
∵點M是BC中點,
∴CM=2,
則點M(2,2),
∴反比例函數(shù)解析式為y=;
②當(dāng)x=4時,y==1,
∴N(4,1),
則CM=BM=2,AN=BN=1,
∴S△OMN=S矩形OABC﹣S△OAN﹣S△COM﹣S△BMN
=4×2﹣×4×1﹣×2×2﹣×2×1
=3;
(2)設(shè)M(a,2),
則k=2a,
∴反比例函數(shù)解析式為y=,
當(dāng)x=4時,y=,
∴N(4,),
則BM=4﹣a,BN=2﹣,
∴===2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線y=ax2(a≠0)與一次函數(shù)y=kx+b的圖象相交于A(﹣1,﹣1),B(2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Q是y軸上的一個動點.
(1)請直接寫出a,k,b的值及關(guān)于x的不等式ax2<kx﹣2的解集;
(2)當(dāng)點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標(biāo);
(3)是否存在以P,Q,A,B為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線與y軸交于點C(0,2),它的頂點為D(1,m),且.
(1)求m的值及拋物線的表達式;
(2)將此拋物線向上平移后與x軸正半軸交于點A,與y軸交于點B,且OA=OB.若點A是由原拋物線上的點E平移所得,求點E的坐標(biāo);
(3)在(2)的條件下,點P是拋物線對稱軸上的一點(位于x軸上方),且∠APB=45°.求P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)“2015揚州鑒真國際半程馬拉松”的賽事共有三項:A、“半程馬拉松”、B、“10公里”、C、“迷你馬拉松”。小明和小剛參加了該項賽事的志愿者服務(wù)工作,組委會隨機將志愿者分配到三個項目組
(1)小明被分配到“迷你馬拉松”項目組的概率為
(2)求小明和小剛被分配到不同項目組的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于一次函數(shù)y=5x﹣3的描述,下列說法正確的是( )
A. 圖象經(jīng)過第一、二、三象限B. 向下平移3個單位長度,可得到y=5x
C. 函數(shù)的圖象與x軸的交點坐標(biāo)是(0,﹣3)D. 圖象經(jīng)過點(1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把兩個全等的直角三角板ABC和EFG疊放在一起,使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合,其中∠B=∠F=30°,斜邊AB和EF長均為4.
(1)當(dāng) EG⊥AC于點K,GF⊥BC于點H時(如圖①),求GH:GK的值.
(2) 現(xiàn)將三角板EFG由圖①所示的位置繞O點沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角α滿足條件:0°<α<30°(如圖②),EG交AC于點K ,GF交BC于點H,GH:GK的值是否改變?證明你發(fā)現(xiàn)的結(jié)論;
(3)三角板EFG由圖①所示的位置繞O點逆時針旋轉(zhuǎn)一周,是否存在某位置使△BFG是等腰三角形,若存在,請直接寫出相應(yīng)的旋轉(zhuǎn)角α(精確到0.1°);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,②,在矩形ABCD中,AB=4,BC=8,P,Q分別是邊BC,CD上的點.
(1)如圖①,若AP⊥PQ,BP=2,求CQ的長;
(2)如圖②,若=2,且E,F,G分別為AP,PQ,PC的中點,求四邊形EPGF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形ABCD中,以AB為邊向正方形外作等邊三角形ABE,連接CE、BD交于點G,連接AG,那么∠AGD的底數(shù)是______度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com