精英家教網(wǎng)如圖,將邊長為2的正方形ABCD沿EF和ED折疊,使得B、C兩點折疊后重合于G,則∠EFG的正切值為
 
分析:由折疊的性質(zhì)可知BE=EG=EC,又BC=2,故EC=1,∠BEF=∠GEF,∠CED=∠GED,可證∠DEF=90°,故∠EFG=90°-∠GEF=∠GED=∠DEC,把∠EFG的正切值的問題轉(zhuǎn)化為在Rt△CDE中,求∠DEC的正切值.
解答:解:由折疊的性質(zhì),得BE=EG=EC,
∵BC=2,
∴EC=1,
又有∠BEF=∠GEF,∠CED=∠GED,
且∠BEF+∠GEF+∠CED+∠GED=180°,
∴∠GEF+∠GED=∠DEF=90°,
∴∠EFG=90°-∠GEF=∠GED=∠DEC,
∴在Rt△CDE中,tan∠DEC=
CD
CE
=2,
tan∠EFG=tan∠DEC=2.
故本題答案為:2.
點評:本題考查了折疊的性質(zhì)的運用.通過折疊判斷直角,利用互余關(guān)系將所求角進行轉(zhuǎn)化是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,將邊長為6cm的正六邊形紙板的六個角各剪切去一個全等的四邊形,再沿虛線折起,做成一個無蓋直六棱柱紙盒,使側(cè)面積等于底面積,被剪去的六個四邊形的面積和為
 
cm2.(結(jié)果精確到0.1cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將邊長為a的正六邊形A1A2A3A4A5A6在直線l上由圖1的位置按順時針方向向右作無滑動滾動,當A1第一次滾動到圖2位置時,頂點A1所經(jīng)過的路徑的長為(  )
精英家教網(wǎng)
A、
4+2
3
3
πa
B、
8+4
3
3
πa
C、
4+
3
3
πa
D、
4+2
3
6
πa

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•豐南區(qū)一模)如圖,將邊長為a的正六邊形A1A2A3A4A5A6在直線l上由圖1的位置按順時針方向向右作無滑動滾動,當A1第一次滾動到圖2位置時,頂點A1所經(jīng)過的路徑的長為
4+2
3
3
πa
4+2
3
3
πa

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•惠城區(qū)模擬)如圖,將邊長為a的正六邊形A1A2A3A4A5A6在直線l上由圖1的位置按順時針方向向右作無滑動滾動,當A1第一次滾動到圖2位置時,頂點A1所經(jīng)過的路徑的長
4+2
3
3
πa
4+2
3
3
πa

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將邊長為3的正六邊形A1A2A3A4A5A6,在直線l上由圖1的位置按順時針方向向右作無滑動滾動,當A1第一次滾動到圖2位置時,頂點A1所經(jīng)過的路徑的長為( 。

查看答案和解析>>

同步練習冊答案