【題目】如圖,有以下3句話:①AB∥CD,②∠B=∠C、③∠E=∠F、請以其中2句話為條件,第三句話為結(jié)論構(gòu)造命題.
(1)你構(gòu)造的是哪幾個命題?
(2)你構(gòu)造的命題是真命題還是假命題?請加以證明.
【答案】(1)由①②得到③;由①③得到②;由②③得到①(2)由①②得到③為真命題;由①③得到②為真命題;由②③得到①為真命題
【解析】
(1)分別以其中2句話為條件,第三句話為結(jié)論可寫出3個命題;
(2)根據(jù)平行線的判定與性質(zhì)對3個命題分別進(jìn)行證明,判斷它們的真假.
(1)解答:構(gòu)造的命題:由①②得到③;由①③得到②;由②③得到①;
(2)解答: ∵AB∥CD,∴∠B=∠CDF,
∵∠B=∠C,∴∠C=∠CDF,∴CE∥BF,∴∠E=∠F,
所以由①②得到③為真命題;
∵AB∥CD,∴∠B=∠CDF,
∵∠E=∠F,∴CE∥BF,∴∠C=∠CDF,∴∠B=∠C,
所以由①③得到②為真命題;
∵∠E=∠F,∴CE∥BF,∴∠C=∠CDF,
∵∠B=∠C,∴∠B=∠CDF,∴AB∥CD,
所以由②③得到①為真命題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于點(diǎn)M,連接CM.
(1)求證:BE=AD;并用含α的式子表示∠AMB的度數(shù);
(2)當(dāng)α=90°時,取AD,BE的中點(diǎn)分別為點(diǎn)P、Q,連接CP,CQ,PQ,如圖2,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,分別延長△ABC的邊AB、AC到D、E,∠CBD與∠BCE的平分線相交于點(diǎn)P,愛動腦筋的小明在寫作業(yè)的時發(fā)現(xiàn)如下規(guī)律:
(1)若∠A=60°,則∠P= °;
(2)若∠A=40°,則∠P= °;
(3)若∠A=100°,則∠P= °;
(4)請你用數(shù)學(xué)表達(dá)式歸納∠A與∠P的關(guān)系 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD與CE交于點(diǎn)F,且AD=CD.
(1)求證:△ABD≌△CFD;
(2)已知BC=7,AD=5,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列圖形,尋找對頂角(不含平角).
(1)如圖①,圖中共有______對對頂角;
(2)如圖②,圖中共有______對對頂角;
(3)如圖③,圖中共有______對對頂角;
(4)研究(1)~(3)小題中直線條數(shù)與對頂角的對數(shù)之間的關(guān)系,若有n條直線相交于一點(diǎn),則可形成__________對對頂角;
(5)若20條直線相交于一點(diǎn),則可形成對頂角多少對?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測量,在四邊形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.
(1)△ACD是直角三角形嗎?為什么?
(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問鋪滿這塊空地共需花費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過P作PQ∥AB交拋物線于點(diǎn)Q,過Q作QN⊥x軸于N,當(dāng)矩形PMNQ的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ,過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方),若FG=2 DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形AOB中,∠AOB=90°, = ,點(diǎn)D在OB上,點(diǎn)E在OB的延長線上,當(dāng)正方形CDEF的邊長為2 時,則陰影部分的面積為( )
A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com