【題目】如圖所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD與CE交于點(diǎn)F,且AD=CD.
(1)求證:△ABD≌△CFD;
(2)已知BC=7,AD=5,求AF的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(-a,a)(a>0),點(diǎn)B(-a-4,a+3),C為該直角坐標(biāo)系內(nèi)的一點(diǎn),連結(jié)AB,OC.若AB∥OC且AB=OC,則點(diǎn)C的坐標(biāo)為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△中,>,∥=,點(diǎn)在 邊上,連接,則添加下列哪一個(gè)條件后,仍無法判定△與△全等( )
A. ∥ B. C. ∠=∠ D. ∠=∠
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象過P(1,4),Q(4,1)兩點(diǎn),且與x軸交于A點(diǎn).
(1)求此一次函數(shù)的解析式;
(2)求△POQ的面積;
(3)已知點(diǎn)M在x軸上,若使MP+MQ的值最小,
求點(diǎn)M的坐標(biāo)及MP+MQ的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣(2m+1)+( m2﹣1).
(1)求證:不論m取什么實(shí)數(shù),該二次函數(shù)圖象與x軸總有兩個(gè)交點(diǎn);
(2)若該二次函數(shù)圖象經(jīng)過點(diǎn)(2m﹣2,﹣2m﹣1),求該二次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.
(1)求證:△ABC≌△ADE;(圖1)
(2)求∠FAE的度數(shù);(圖1)
(3)如圖2,延長CF到G點(diǎn),使BF=GF,連接AG.求證:CD=CG;并猜想CD與2BF+DE的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)yl=x(x≥0), (x>0)的圖象如圖所示,則結(jié)論: ①兩函數(shù)圖象的交點(diǎn)A的坐標(biāo)為(3,3);
②當(dāng)x>3時(shí),y2>y1;
③當(dāng)x=1時(shí),BC=8;
④當(dāng)x逐漸增大時(shí),yl隨著x的增大而增大,y2隨著x的增大而減。
其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖所示 AD、AE分別是△ABC的中線、高,且AB=5cm,AC=3cm,,則△ABD與△ACD的周長之差為_________,△ABD與△ACD的面積關(guān)系為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC=2 ,E為BC邊上一點(diǎn),BC=3BE,將矩形ABCD沿AE所在的直線折疊,B點(diǎn)恰好落在對角線AC上的B′處,則AB= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com