【題目】已知,拋物線y=ax2+bx+c(a≠0)經(jīng)過原點(diǎn),頂點(diǎn)為A(h,k)(h≠0).
(1)當(dāng)h=1,k=2時(shí),求拋物線的解析式;
(2)若拋物線y=tx2(t≠0)也經(jīng)過A點(diǎn),求a與t之間的關(guān)系式;
(3)當(dāng)點(diǎn)A在拋物線y=x2﹣x上,且﹣2≤h<1時(shí),求a的取值范圍.
【答案】
(1)
∵頂點(diǎn)為A(1,2),設(shè)拋物線為y=a(x﹣1)2+2,
∵拋物線經(jīng)過原點(diǎn),
∴0=a(0﹣1)2+2,
∴a=﹣2,
∴拋物線解析式為y=﹣2x2+4x
(2)
∵拋物線經(jīng)過原點(diǎn),
∴設(shè)拋物線為y=ax2+bx,
∵h(yuǎn)=﹣ ,
∴b=﹣2ah,
∴y=ax2﹣2ahx,
∵頂點(diǎn)A(h,k),
∴k=ah2﹣2ah,
拋物線y=tx2也經(jīng)過A(h,k),
∴k=th2,
∴th2=ah2﹣2ah2,
∴t=﹣a,
(3)
∵點(diǎn)A在拋物線y=x2﹣x上,
∴k=h2﹣h,又k=ah2﹣2ah2,
∴h= ,
∵﹣2≤h<1,
∴﹣2≤ <1,
①當(dāng)1+a>0時(shí),即a>﹣1時(shí), ,解得a>0,
②當(dāng)1+a<0時(shí),即a<﹣1時(shí), 解得a≤﹣ ,
綜上所述,a的取值范圍a>0或a≤﹣
【解析】(1)用頂點(diǎn)式解決這個(gè)問題,設(shè)拋物線為y=a(x﹣1)2+2,原點(diǎn)代入即可.(2)設(shè)拋物線為y=ax2+bx,則h=﹣ ,b=﹣2ah代入拋物線解析式,求出k(用a、h表示),又拋物線y=tx2也經(jīng)過A(h,k),求出k,列出方程即可解決.(3)根據(jù)條件列出關(guān)于a的不等式即可解決問題.本題考查二次函數(shù)綜合題、不等式等知識,解題的關(guān)鍵是學(xué)會用參數(shù)解決問題,題目比較難參數(shù)比較多,第三個(gè)問題解不等式要注意討論,屬于中考壓軸題.
【考點(diǎn)精析】通過靈活運(yùn)用拋物線與坐標(biāo)軸的交點(diǎn),掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解分式方程:
(1) (2)
【答案】(1) ;(2)x=
【解析】試題分析:(1)兩邊乘以(x-1)(2x+1)去分母,轉(zhuǎn)化為整式方程,然后解整式方程,檢驗(yàn)后寫出分式方程的解即可;
(2)兩邊乘以(x+2)(x-2)去分母,轉(zhuǎn)化為整式方程,然后解整式方程,檢驗(yàn)后寫出分式方程的解即可.
試題解析:
解:(1)兩邊乘以(x-1)(2x+1)去分母得:2x+1=5(x-1),
解得:x=2,
當(dāng)x=2時(shí),(x-1)(2x+1)≠0,
∴原分式方程的解為x=2;
(2)兩邊乘以(x+2)(x-2)去分母得:(x-2)2-3=(x+2)(x-2),
解得:x=,
當(dāng)x=時(shí),(x+2)(x-2)≠0,
所以原分式方程的解為x=.
【題型】解答題
【結(jié)束】
21
【題目】先化簡,再求值,其中的值從不等式組的整數(shù)解中選取.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣ x2﹣ x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C
(1)求點(diǎn)A,B,C的坐標(biāo);
(2)點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對稱軸上的點(diǎn),求以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,P是l上一動(dòng)點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大小.
其中會隨點(diǎn)P的移動(dòng)而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC翻折,點(diǎn)B落在點(diǎn)F處,FC交AD于E.
(1)求證:△AFE≌△CDF;
(2)若AB=4,BC=8,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩種移動(dòng)電話計(jì)費(fèi)方式表如下:
(1)設(shè)一個(gè)月內(nèi)在本地通話時(shí)間為分鐘,全球通收費(fèi)表示為 元,神州行收費(fèi)表示為 元
(2)若某用戶一個(gè)月內(nèi)本地通話時(shí)間為2.5小時(shí),你認(rèn)為選擇哪種方式較為劃算?
(3)當(dāng)通話時(shí)間為多少時(shí)間,兩種收費(fèi)方式的費(fèi)用是一樣的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若∠1=100°,∠4=80°,則__________,理由是________________;若∠3=70°,則∠2=_______時(shí),也可推出AB∥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥EF于點(diǎn)G,CD⊥EF于點(diǎn)H,GP平分∠EGB,HQ平分∠CHF,圖中有哪些平行線?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),計(jì)劃開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個(gè)類別的拓展性課程,要求每一位學(xué)生都自主選擇一個(gè)類別的拓展性課程.為了了解學(xué)生選擇拓展性課程的情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖(部分信息未給出):
根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學(xué)生人數(shù).
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若該校共有1600名學(xué)生,請估計(jì)全校選擇體育類的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com