【題目】如圖所示的方格地面上,標(biāo)有編號(hào)1、2、3的3個(gè)小方格地面是空地,另外6個(gè)小方格地面是草坪,除此以外小方格地面完全相同
(1)一只自由飛翔的小鳥,將隨意地落在圖中所示的方格地面上,求小鳥落在草坪上的概率;
(2)現(xiàn)準(zhǔn)備從圖中所示的3個(gè)小方格空地中任意選取2個(gè)種植草坪,則編號(hào)為1、2的2個(gè)小方格空地種植草坪的概率是多少 (用樹狀圖或列表法求解)?
【答案】
(1)解:P(小鳥落在草坪上)= =
(2)解:用樹狀圖或列表格列出所有問題的可能的結(jié)果:
1 | 2 | 3 | |
1 | (1,2) | (1,3) | |
2 | (2,1) | (2,3) | |
3 | (3,1) | (3,2) |
由樹狀圖(列表)可知,共有6種等可能結(jié)果,編號(hào)為1、2的2個(gè)小方格空地種植草坪有2種,
所以P(編號(hào)為1、2的2個(gè)小方格空地種植草坪)= =
【解析】根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.使用樹狀圖分析時(shí),一定要做到不重不漏.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解列表法與樹狀圖法的相關(guān)知識(shí),掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點(diǎn)O,且OB=OC.
(1)求證:△ABC是等腰三角形;
(2)判斷點(diǎn)O是否在∠BAC的角平分線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,P為AB的中點(diǎn),Q為邊CD上一動(dòng)點(diǎn),設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)M、N,過Q作QE⊥AB于點(diǎn)E,過M作MF⊥BC于點(diǎn)F.
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,直線l垂直平分線段AC,垂足為O,直線l分別與線段AD、CB的延長線交于點(diǎn)E、F.
(1)△ABC與△FOA相似嗎?為什么?
(2)試判定四邊形AFCE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是面積為 的等邊三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC與DE相交于點(diǎn)F,則△AEF的面積等于(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】巳知二次函數(shù)y=a(x2﹣6x+8)(a>0)的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C.點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖①.連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)0'恰好落在該拋物線的 對(duì)稱軸上,求實(shí)數(shù)a的值;
(2)如圖②,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于邊EF的 右側(cè).小林同學(xué)經(jīng)過探索后發(fā)現(xiàn)了一個(gè)正確的命題:“若點(diǎn)P是邊EH或邊HG上的任意一點(diǎn),則四條線段PA、PB、PC、PD不能與任何一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等 (即這四條線段不能構(gòu)成平行四邊形).“若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),剛才的結(jié)論是否也成立?請(qǐng)你積極探索,并寫出探索過程;
(3)如圖②,當(dāng)點(diǎn)P在拋物線對(duì)稱軸上時(shí),設(shè)點(diǎn)P的縱坐標(biāo)t是大于3的常數(shù),試問:是否存在一個(gè)正數(shù)a,使得四條線段PA、PB、PC、PD與一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等 (即這四條線段能構(gòu)成平行四邊形)?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)計(jì)算:22+(﹣1)4+( ﹣2)0﹣|﹣3|;
(2)先化簡,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA=2,以點(diǎn)A為圓心,1為半徑畫⊙A與OA的延長線交于點(diǎn)C,過點(diǎn)A畫OA的垂線,垂線與⊙A的一個(gè)交點(diǎn)為B,連接BC
(1)線段BC的長等于;
(2)請(qǐng)?jiān)趫D中按下列要求逐一操作,并回答問題: 以點(diǎn)為圓心,以線段的長為半徑畫弧,與射線BA交于點(diǎn)D,使線段OD的長等于
(3)連OD,在OD上畫出點(diǎn)P,使OP的長等于 ,請(qǐng)寫出畫法,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com