【題目】某游客計(jì)劃測(cè)量這座塑像的高度,(如圖1),由于游客無法直接到達(dá)塑像底部,因此該游客計(jì)劃借助坡面高度來測(cè)量塑像的高度;如圖2,在塑像旁山坡坡腳A處測(cè)得塑像頭頂C的仰角為75°,當(dāng)從A處沿坡面行走10米到達(dá)P處時(shí),測(cè)得塑像頭頂C的仰角剛好為45°,已知山坡的坡度i=1:3,且O,A,B在同一直線上,求塑像的高度.(側(cè)傾器高度忽略不計(jì),結(jié)果精確到0.1米,參考數(shù)據(jù):cos75°≈0.3,tan75°≈3.7,,,)
【答案】塑像的高度約為 17.5 米.
【解析】
過點(diǎn)P作PE⊥OB于點(diǎn)E,PF⊥OC于點(diǎn)F,設(shè)PE=x,則AE=3x,在Rt△AEP中根據(jù)勾股定理得PE,在Rt△AOC中,由tan75°求得m的值,繼而可得答案.
過點(diǎn) P 作 PE⊥OB 交 OB 于點(diǎn) E,PF⊥OC 交 OC 于點(diǎn) F,
∵i=1:3,AP=10,
設(shè) PE=x,則 AE=3x,
在 Rt△AEP 中,x2+(3x)2=102,
解得: 或(舍),
∴,則,
∵∠CPF=∠PCF=45°,
∴CF=PF,
設(shè) CF=PF=m 米,則米, 米,
在 Rt△AOC 中,即
解得:m≈14.3,
∴ 米,
答:塑像的高度約為 17.5 米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《歌手—當(dāng)打之年》是湖南衛(wèi)視最受歡迎的娛樂節(jié)目,奇襲挑戰(zhàn)賽在每周五晚準(zhǔn)時(shí)進(jìn)行,7名主打歌手進(jìn)行比賽的同時(shí)還要接受1名奇襲歌手挑戰(zhàn).近期即將進(jìn)行終極奇襲戰(zhàn),奇襲歌手艾熱將挑戰(zhàn)徐佳瑩(女)、米希亞(女)、蕭敬騰、華晨宇、周深、聲入人心男團(tuán)、旅行團(tuán)樂隊(duì).
(1)當(dāng)主持人詢問艾熱準(zhǔn)備奇襲哪位歌手時(shí),艾熱透露“希望和男性嗓音去比試”,那周深被奇襲的概率是 ;
(2)7名主打歌手比賽的上場(chǎng)順序是通過抽簽方式進(jìn)行,若已經(jīng)知道前4位歌手的上場(chǎng)順序,還有華晨宇、米希亞、周深不知道,那么華晨宇和周深兩位是相鄰出場(chǎng)的概率是多少.(請(qǐng)用“畫樹狀圖”或“列表”等方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年湖南省進(jìn)入高中學(xué)習(xí)的學(xué)生三年后將面對(duì)新高考,高考方案與高校招生政策都將有重大變化。某部門為了了解政策的宣傳情況,對(duì)某初級(jí)中學(xué)學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)學(xué)生對(duì)政策的了解程度由高到低分為A,B,C,D四個(gè)等級(jí),并對(duì)調(diào)查結(jié)果分析后繪制了如下兩幅圖不完整的統(tǒng)計(jì)圖。請(qǐng)你根據(jù)圖中提供的信息完成下列問題:
(1)求被調(diào)查學(xué)生的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求扇形統(tǒng)計(jì)圖中的A等對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)已知該校有1500名學(xué)生,估計(jì)該校學(xué)生對(duì)政策內(nèi)容了解程度達(dá)到A等的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形,,,…,按如圖所示的方式放置,點(diǎn),…和點(diǎn),…分別在直線和軸上.則點(diǎn)的縱坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“禹州鈞瓷”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的鈞瓷花瓶,成本為40元/件,每天銷量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式.
(2)如果規(guī)定每天鈞瓷花瓶的銷售量不低于120件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少元?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出100元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于2000元,試確定該鈞瓷花瓶銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C,直線y=x﹣3經(jīng)過B,C兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P是第四象限內(nèi)拋物線上的動(dòng)點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,交直線BC于點(diǎn)M,連接AC,過點(diǎn)M作MN⊥AC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為t.
①求線段MN的長(zhǎng)d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
②點(diǎn)Q是平面內(nèi)一點(diǎn),是否存在一點(diǎn)P,使以B,C,P,Q為頂點(diǎn)的四邊形為矩形?若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a>0)經(jīng)過點(diǎn)M(﹣1,2)和點(diǎn)N(1,﹣2),則下列說法錯(cuò)誤的是( )
A.a+c=0
B.無論a取何值,此二次函數(shù)圖象與x軸必有兩個(gè)交點(diǎn),且函數(shù)圖象截x軸所得的線段長(zhǎng)度必大于2
C.當(dāng)函數(shù)在x<時(shí),y隨x的增大而減小
D.當(dāng)﹣1<m<n<0時(shí),m+n<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在多項(xiàng)式的乘法公式中,完全平方公式是其中重要的一個(gè).
(1)請(qǐng)補(bǔ)全完全平方公式的推導(dǎo)過程:
,
,
.
(2)如圖,將邊長(zhǎng)為的正方形分割成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,請(qǐng)你結(jié)合圖給出完全平方公式的幾何解釋.
(3)用完全平方公式求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某次“小學(xué)生書法比賽”的成績(jī)情況,隨機(jī)抽取了30名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)情況繪成如圖所示的頻數(shù)分布直方圖,己知成績(jī)x(單位:分)均滿足“50≤x<100”.根據(jù)圖中信息回答下列問題:
(1)圖中a的值為 ;
(2)若要繪制該樣本的扇形統(tǒng)計(jì)圖,則成績(jī)x在“70≤x<80”所對(duì)應(yīng)扇形的圓心角度數(shù)為 度;
(3)此次比賽共有300名學(xué)生參加,若將“x≥80”的成績(jī)記為“優(yōu)秀”,則獲得“優(yōu)秀“的學(xué)生大約有 人:
(4)在這些抽查的樣本中,小明的成績(jī)?yōu)?2分,若從成績(jī)?cè)凇?0≤x<60”和“90≤x<100”的學(xué)生中任選2人,請(qǐng)用列表或畫樹狀圖的方法,求小明被選中的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com