【題目】【問(wèn)題情景】利用三角形的面積相等來(lái)求解的方法是一種常見(jiàn)的等積法,此方法是我們解決幾何問(wèn)題的途徑之一.

例如:張老師給小聰提出這樣一個(gè)問(wèn)題:

如圖1,在ABC中,AB=3,AD=6,問(wèn)ABC的高ADCE的比是多少?

小聰?shù)挠?jì)算思路是:

根據(jù)題意得:SABC=BCAD=ABCE.

從而得2AD=CE,

請(qǐng)運(yùn)用上述材料中所積累的經(jīng)驗(yàn)和方法解決下列問(wèn)題:

(1)【類(lèi)比探究】

如圖2,在ABCD中,點(diǎn)E、F分別在AD,CD上,且AF=CE,并相交于點(diǎn)O,連接BE、BF,

求證:BO平分角AOC.

(2)【探究延伸】

如圖3,已知直線mn,點(diǎn)A、C是直線m上兩點(diǎn),點(diǎn)B、D是直線n上兩點(diǎn),點(diǎn)P是線段CD中點(diǎn),且∠APB=90°,兩平行線m、n間的距離為4.求證:PAPB=2AB.

(3)【遷移應(yīng)用】

如圖4,EAB邊上一點(diǎn),EDAD,CECB,垂足分別為D,C,DAB=B,AB=,BC=2,AC=,又已知M、N分別為AE、BE的中點(diǎn),連接DM、CN.求DEMCEN的周長(zhǎng)之和.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)5+

【解析】分析:(1)、根據(jù)平行四邊形的性質(zhì)得出△ABF和△BCE的面積相等,過(guò)點(diǎn)BOGAFG,OHCEH,從而得出AF=CE,然后證明△BOG和△BOH全等,從而得出∠BOG=BOH,即角平分線;(2)、過(guò)點(diǎn)PPGnG,交mF,根據(jù)平行線的性質(zhì)得出△CPFDPG全等,延長(zhǎng)BPACE,證明△CPE和△DPB全等,根據(jù)等積法得出AB=AP×PB,從而得出答案;(3)、,延長(zhǎng)AD,BC交于點(diǎn)G,過(guò)點(diǎn)AAFBCF,設(shè)CF=x,根據(jù)Rt△ABFRt△ACF的勾股定理得出x的值,根據(jù)等積法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,從而得出兩個(gè)三角形的周長(zhǎng)之和.

同理:EM+EN=AB

詳解:證明:(1)如圖2, ∵四邊形ABCD是平行四邊形,

SABF=SABCD,SBCE=SABCD, SABF=SBCE

過(guò)點(diǎn)BOGAFG,OHCEH, SABF=AF×BG,SBCE=CE×BH,

AF×BG=CE×BH,即:AF×BG=CE×BH, AF=CE, BG=BH,

RtBOGRtBOH中,, RtBOGRtBOH, ∴∠BOG=BOH,

OB平分∠AOC,

(2)如圖3,過(guò)點(diǎn)PPGnG,交mF, mn, PFAC,

∴∠CFP=BGP=90°, ∵點(diǎn)PCD中點(diǎn),

CPFDPG中,, ∴△CPF≌△DPG, PF=PG=FG=2,

延長(zhǎng)BPACE, mn, ∴∠ECP=BDP, CP=DP,

CPEDPB中,, ∴△CPE≌△DPB, PE=PB,

∵∠APB=90°, AE=AB, SAPE=SAPB,

SAPE=AE×PF=AE=AB,SAPB=AP×PB,

AB=AP×PB, 即:PAPB=2AB;

(3)如圖4,延長(zhǎng)AD,BC交于點(diǎn)G, ∵∠BAD=B,

AG=BG,過(guò)點(diǎn)AAFBCF,

設(shè)CF=x(x>0), BF=BC+CF=x+2, RtABF中,AB=,

根據(jù)勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2, RtACF中,AC=

根據(jù)勾股定理得,AF2=AC2﹣CF2=26﹣x2

34﹣(x+2)2=26﹣x2, x=﹣1(舍)或x=1, AF==5,

連接EG, SABG=BG×AF=SAEG+SBEG=AG×DE+BG×CE=BG(DE+CE),

DE+CE=AF=5, RtADE中,點(diǎn)MAE的中點(diǎn), AE=2DM=2EM,

同理:BE=2CN=2EN, AB=AE+BE, 2DM+2CN=AB, DM+CN=AB,

同理:EM+EN=AB ∴△DEMCEN的周長(zhǎng)之和=DE+DM+EM+CE+CN+EN=(DE+CE)+[(DM+CN)+(EM+EN)]

=(DE+CN)+AB=5+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線段AB20,點(diǎn)CBA的延長(zhǎng)線上,點(diǎn)D在直線AB上,AC12,BD16,點(diǎn)M是線段CD的中點(diǎn),則AM的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃用900元從生產(chǎn)廠家購(gòu)進(jìn)50臺(tái)計(jì)算器,已知該廠家生產(chǎn)三種不同型號(hào)的計(jì)算器,出廠價(jià)分別為A種每臺(tái)15元,B種每臺(tái)21元,C種毎臺(tái)25元.

1)商場(chǎng)同時(shí)購(gòu)進(jìn)兩種不同型號(hào)的計(jì)算器50臺(tái),用去900元.

①若同時(shí)購(gòu)進(jìn)A、B 兩種時(shí),則購(gòu)進(jìn)A、B 兩種計(jì)算器各多少臺(tái)?;

②若同時(shí)購(gòu)進(jìn)AC 兩種時(shí),則購(gòu)進(jìn)A、C 兩種計(jì)算器各多少臺(tái)?;

2)若商場(chǎng)銷(xiāo)售一臺(tái)A種計(jì)算器可獲利5元,銷(xiāo)售一臺(tái)B種計(jì)算器可獲利8元,銷(xiāo)售一臺(tái)C種計(jì)算器可獲利12元,在同時(shí)購(gòu)進(jìn)兩種不同型號(hào)的計(jì)算器方案中,為了使銷(xiāo)售時(shí)獲利最多,你選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商販在批發(fā)市場(chǎng)以每包元的價(jià)格購(gòu)進(jìn)甲種茶葉40包,以每包元的價(jià)格購(gòu)進(jìn)乙種茶葉60.

1)該商販購(gòu)進(jìn)甲、乙兩種茶葉共需資金______元(用含,的式子表示);

2)若該商販將兩種茶葉都提價(jià)全部售出,共可獲利多少元(用含,的式子表示)?

3)若該商販將兩種茶葉都以每包元的價(jià)格全部出售,在這次買(mǎi)賣(mài)中該商販?zhǔn)怯是虧損,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)ab,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB|ab|.回答下列問(wèn)題:

1)數(shù)軸上表示﹣31兩點(diǎn)之間的距離是   ,數(shù)軸上表示﹣23的兩點(diǎn)之間的距離是   ;

2)數(shù)軸上表示x和﹣1的兩點(diǎn)之間的距離表示為   ;

3)若x表示一個(gè)有理數(shù),則|x2|+|x+3|有最小值嗎?若有,請(qǐng)求出最小值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,把AB邊上的點(diǎn)D順時(shí)針旋轉(zhuǎn)得到AB于點(diǎn)E,若,則的面積是

A. 3 B. 5 C. 11 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息解答下列問(wèn)題:

課外體育鍛煉情況扇形統(tǒng)計(jì)圖中,經(jīng)常參加所對(duì)應(yīng)的圓心角的度數(shù)為______;

請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

該校共有1200名男生,請(qǐng)估計(jì)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù);

小明認(rèn)為全校所有男生中,課外最喜歡參加的運(yùn)動(dòng)項(xiàng)目是乒乓球的人數(shù)約為,請(qǐng)你判斷這種說(shuō)法是否正確,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P為邊長(zhǎng)為6的正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),Q在CD上,且CQ=BP,連接AP、BQ,將△BQC沿BQ所在的直線翻折得到△BQE,延長(zhǎng)QE交BA的延長(zhǎng)線于點(diǎn)F.

(1)試探究AP與BQ的數(shù)量與位置關(guān)系,并證明你的結(jié)論;

(2)當(dāng)E是FQ的中點(diǎn)時(shí),求BP的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)O為直線AB上一點(diǎn),在直線AB同側(cè)任作射線OC、OD,使得∠COD=90°

1)如圖1,過(guò)點(diǎn)O作射線OE,當(dāng)OE恰好為∠AOC的角平分線時(shí),另作射線OF,使得OF平分∠BOD,則∠EOF的度數(shù)是__________度;

2)如圖2,過(guò)點(diǎn)O作射線OE,當(dāng)OE恰好為∠AOD的角平分線時(shí),求出∠BOD與∠COE的數(shù)量關(guān)系;

3)過(guò)點(diǎn)O作射線OE,當(dāng)OC恰好為∠AOE的角平分線時(shí),另作射線OF,使得OF平分∠COD,若∠EOC=3EOF,直接寫(xiě)出∠AOE的度數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案