【題目】如圖,RtΔABC中,AB=AC,DE是斜邊BC上兩點,∠DAE=45°,將ΔADC繞點A順時針旋轉(zhuǎn)90°后,得到ΔAFB,連接EF,下列結(jié)論:①ΔAED≌ΔAEF,,③ΔABC的面積等于四邊形AFBD的面積,,⑤BE+DC=DE,其中正確的是(

A. ①②④B. ①③④C. ③④⑤D. ①③⑤

【答案】B

【解析】

①根據(jù)旋轉(zhuǎn)的性質(zhì)知∠CAD=BAF,AD=AF,因為∠BAC=90°,∠DAE=45°,所以∠CAD+BAE=45°,可得∠EAF=45°=DAE,由此即可證明△AEF≌△AED;

②當(dāng)△ABE∽△ACD時,該比例式成立;

③根據(jù)旋轉(zhuǎn)的性質(zhì),△ADC≌△ABF,進(jìn)而得出△ABC的面積等于四邊形AFBD的面積;

④據(jù)①知BF=CDEF=DE,∠FBE=90°,根據(jù)勾股定理判斷.

⑤根據(jù)①知道△AEF≌△AED,得CD=BFDE=EF;由此即可確定該說法是否正確.

①根據(jù)旋轉(zhuǎn)的性質(zhì)知∠CAD=BAF,AD=AF

∵∠BAC=90°,∠DAE=45°,∴∠CAD+BAE=45°,∴∠EAF=45°,∴△AED≌△AEF;

故本選項正確;

②∵AB=AC,∴∠ABE=ACD;

∴當(dāng)∠BAE=CAD時,△ABE∽△ACD,∴;

當(dāng)∠BAE≠∠CAD時,△ABE與△ACD不相似,即;

∴此比例式不一定成立,故本選項錯誤;

③根據(jù)旋轉(zhuǎn)的性質(zhì)知△ADC≌△AFB,∴SABC=SABD+SABF=S四邊形AFBD,即三角形ABC的面積等于四邊形AFBD的面積,故本選項正確;

④∵∠FBE=45°+45°=90°,∴BE2+BF2=EF2

∵△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,∴△AFB≌△ADC,∴BF=CD

又∵EF=DE,∴BE2+DC2=DE2,故本選項正確;

⑤根據(jù)①知道△AEF≌△AED,得CD=BF,DE=EF,∴BE+DC=BE+BFDE=EF,即BE+DCDE,故本選項錯誤.

綜上所述:正確的說法是①③④.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù) y kx b k 0的圖象與反比例函數(shù) y m 0的圖象交于 A (-1,-1),B (n,2)兩點.

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)點 P x 軸上,過點 P 做垂直于 x 軸的直線 l,交直線 AB 于點 C,若AB=2AC,請直接寫出點 C 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計圖中,m的值是 ;

(2)將條形統(tǒng)計圖補(bǔ)充完整;

(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在矩形ABCD中,AB=4,BC=2,點M為邊BC的中點,點P為邊CD上的動點(點P異于CD兩點)。連接PM,過點PPM的垂線與射線DA相交于點E(如圖)。設(shè)CP=x,DE=y

1)寫出yx之間的函數(shù)關(guān)系式 ;

2)若點E與點A重合,則x的值為 ;

3)是否存在點P,使得點D關(guān)于直線PE的對稱點D′落在邊AB上?若存在,求x的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),點A的坐標(biāo)為,點B的坐標(biāo)為,圓A的半徑為2.下列說法中不正確的是(

A. 當(dāng)時,點B在圓AB. 當(dāng)時,點B在圓A內(nèi)

C. 當(dāng)時,點B在圓AD. 當(dāng)時,點B在圓A內(nèi)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在梯形ABCD中,ADBC,AB=BC,DCBC,且AD=1,DC=3,點P為邊AB上一動點,以P為圓心,BP為半徑的圓交邊BC于點Q

(1)AB的長;

(2)當(dāng)BQ的長為時,請通過計算說明圓P與直線DC的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù) yax2bxc(a≠0)的圖象的一部分,給出下列命題:①abc0b2a;ax2bxc0的兩根分別為-31;a2bc0.其中正確的命題是( )

A. ①② B. ②③ C. ①③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB為⊙O的直徑,弦CDAB于點E,在CD的延長線上取一點P,PG與⊙O相切于點G,連接AGCD于點F

(Ⅰ)如圖①,若∠A20°,求∠GFP和∠AGP的大;

(Ⅱ)如圖②,若E為半徑OA的中點,DGAB,且OA2,求PF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=16cmAB=20cm,動點D由點C向點A以每秒1 cm速度在邊AC上運動,動點E由點C向點B以每秒cm速度在邊BC上運動,若點D,點E從點C同時出發(fā),運動t(t>0),聯(lián)結(jié)DE.

1)求證:△DCE∽△BCA

2)設(shè)經(jīng)過點D、CE三點的圓為⊙P.

①當(dāng)⊙P與邊AB相切時,求t的值.

②在點D、點E運動過程中,若⊙P與邊AB交于點F、G(點F在點G左側(cè)),聯(lián)結(jié)CP 并延長CP交邊AB于點M,當(dāng)△PFM與△CDE相似時,求t的值.

查看答案和解析>>

同步練習(xí)冊答案