【題目】平面直角坐標(biāo)系中,四邊形OABC是正方形,點(diǎn)A,C 在坐標(biāo)軸上,點(diǎn)B(,),P是射線OB上一點(diǎn),將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得,Q是點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn).
(1)如圖(1)當(dāng)OP = 時(shí),求點(diǎn)Q的坐標(biāo);
(2)如圖(2),設(shè)點(diǎn)P(,)(),的面積為S. 求S與的函數(shù)關(guān)系式,并寫出當(dāng)S取最小值時(shí),點(diǎn)P的坐標(biāo);
(3)當(dāng)BP+BQ = 時(shí),求點(diǎn)Q的坐標(biāo)(直接寫出結(jié)果即可)
【答案】(1);(2),;(3).
【解析】
(1)先根據(jù)正方形的性質(zhì)、解直角三角形可得,,再根據(jù)三角形全等的判定定理與性質(zhì)可得,從而可得,由此即可得出答案;
(2)先根據(jù)正方形的性質(zhì)得出,,再根據(jù)旋轉(zhuǎn)的性質(zhì)、勾股定理可得,,然后根據(jù)直角三角形的面積公式可得S與x的函數(shù)關(guān)系式,最后利用二次函數(shù)的解析式即可得點(diǎn)P的坐標(biāo);
(3)先根據(jù)旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)得出,,從而得出點(diǎn)P在OB的延長(zhǎng)線上,再根據(jù)線段的和差可得,然后同(1)的方法可得,,最后根據(jù)三角形全等的性質(zhì)、線段的和差可得,由此即可得出答案.
(1)如圖1,過(guò)P點(diǎn)作軸于點(diǎn)G,過(guò)Q點(diǎn)作軸于點(diǎn)H
∵四邊形OABC是正方形
∴
∵
∴
在中,,
∴
∵繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到
∴,
在和中,
∴
∴
∴
則點(diǎn)Q的坐標(biāo)為;
(2)如圖2,過(guò)P點(diǎn)作軸于點(diǎn)G
∵繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到
∴
∵
∴,
∴
在中,由勾股定理得:
整理得:
∴
整理得:
由二次函數(shù)的性質(zhì)可知,當(dāng)時(shí),S隨x的增大而減;當(dāng)時(shí),S隨x的增大而增大
則當(dāng)時(shí),S取得最小值,最小值為9
此時(shí)
故點(diǎn)P的坐標(biāo)為;
(3)∵繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到
∴
∵
∴
∵四邊形OABC是正方形,且邊長(zhǎng)
對(duì)角線
∴點(diǎn)P在OB的延長(zhǎng)線上
∴
解得
如圖3,過(guò)P點(diǎn)作軸于點(diǎn)G,過(guò)Q點(diǎn)作軸于點(diǎn)H
同(1)可得:,
,
則點(diǎn)Q的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若二次購(gòu)進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在⊙O中,半徑OA丄OB,點(diǎn)D在OA或OA的延長(zhǎng)線上(不與點(diǎn)O,A重合),直線BD交⊙O于點(diǎn)C,過(guò)C作⊙O的切線交直線OA于點(diǎn)P.
(1)如圖(1),點(diǎn)D在線段OA上,若∠OBC=15°, 求∠OPC的大;
(2)如圖(2),點(diǎn)D在OA的延長(zhǎng)線上,若∠OBC=65°,求∠OPC的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為的網(wǎng)格中,點(diǎn)A,B,C在格點(diǎn)上,以點(diǎn)A為圓心、AC為半徑的半圓交AB于點(diǎn) E.
(1)BE的長(zhǎng)為________;
(2)請(qǐng)用無(wú)刻度的直尺,在如圖所示的網(wǎng)格中,找一點(diǎn)P(點(diǎn)P,C 在AB兩側(cè)),使PA=5,PE與半圓相切. 簡(jiǎn)要說(shuō)明點(diǎn)P的位置是如何找到的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有三個(gè)質(zhì)地、大小都相同的小球分別標(biāo)上數(shù)字2,-1,3后放入一個(gè)不透明的口袋攪勻,任意摸出一個(gè)小球,記下數(shù)字后,放回口袋中攪勻,再任意摸出一個(gè)小球,又記下數(shù)字b.這樣就得到一個(gè)點(diǎn)的坐標(biāo).
(1)求這個(gè)點(diǎn)恰好在函數(shù)的圖像上的概率.(請(qǐng)用“畫(huà)樹(shù)狀圖”或“列表”等方法給出分析過(guò)程,并求出結(jié)果)
(2)如果再往口袋中增加個(gè)標(biāo)上數(shù)字2的小球,按照同樣的操作過(guò)程,所得到的點(diǎn)恰好在函數(shù)的圖像上的概率是_________(請(qǐng)用含的代數(shù)式直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】家訪是學(xué)校與家庭溝通的有效渠道,是形成教育合力的關(guān)鍵,是轉(zhuǎn)化后進(jìn)生的催化劑.某市教育局組織全市中小學(xué)教師開(kāi)展家訪活動(dòng)活動(dòng)過(guò)程中,教育局隨機(jī)抽取了部分教師調(diào)查其近兩周家訪次數(shù),將采集到的數(shù)據(jù)按家訪次數(shù)分成五類,并分別繪制了下面的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)所抽取的教師中,近兩周家訪次數(shù)的眾數(shù)是 次,平均每位教師家訪 次;
(3)若該市有12000名教師,請(qǐng)估計(jì)近兩周家訪不少于3次的教師有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).的頂點(diǎn)在格點(diǎn)上,僅用無(wú)刻度的直尺在給定網(wǎng)格中畫(huà)圖,畫(huà)圖過(guò)程用虛線表示,畫(huà)圖結(jié)果用實(shí)線表示,按步驟完成下列問(wèn)題:
(1)作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)F;
(2)將線段AB向右平移得到線段DE,DE與BC交于點(diǎn)M,使;
(3)線段DE可以由線段BF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)度而得到(B,F的對(duì)應(yīng)點(diǎn)分別為D,E),在圖中畫(huà)出點(diǎn)O
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),過(guò)點(diǎn)的拋物線與軸的另一個(gè)交點(diǎn)為.
(1)求拋物線的解析式和點(diǎn)的坐標(biāo);
(2)是直線上方拋物線上一動(dòng)點(diǎn),交于.設(shè),請(qǐng)求出的最大值和此時(shí)點(diǎn)的坐標(biāo);
(3)是軸上一動(dòng)點(diǎn),連接,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得線段,若點(diǎn)恰好落在拋物線上,請(qǐng)直接寫出此時(shí)點(diǎn)的坐標(biāo).
備用圖
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com