【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD交CD的延長線于點(diǎn)E,DA平分∠BDE.
⑴求證:AE是⊙O的切線;
⑵若AE=4cm,CD=6cm,求AD的長.
【答案】(1)證明見解析;(2)AD=2.
【解析】
(1)根據(jù)等邊對(duì)等角得出∠ODA=∠OAD,進(jìn)而得出∠OAD=∠EDA,證得EC∥OA,從而證得AE⊥OA,即可證得AE是⊙O的切線;
(2)過點(diǎn)O作OF⊥CD,垂足為點(diǎn)F.從而證得四邊形AOFE是矩形,得出OF=AE=4cm,根據(jù)垂徑定理得出DF=CD=3cm,在Rt△ODF中,根據(jù)勾股定理即可求得⊙O的半徑,得出ED,根據(jù)勾股定理即可求得AD.
(1)證明:連結(jié)OA.
∵OA=OD,∴∠ODA=∠OAD.
∵DA平分∠BDE,∴∠ODA=∠EDA.
∴∠OAD=∠EDA,∴EC∥OA.
∵AE⊥CD,∴OA⊥AE.
∵點(diǎn)A在⊙O上,∴AE是⊙O的切線.
(2)過點(diǎn)O作OF⊥CD,垂足為點(diǎn)F.
∵∠OAE=∠AED=∠OFD=90°
∴四邊形AOFE是矩形.
∴OF=AE=4cm.EF=OA,
又∵OF⊥CD,
∴DF=CD=3cm.
在Rt△ODF中,OD= =5cm,
即⊙O的半徑為5cm,
∴EF=OA=5cm,
∴ED=EF-DF=5-3=2cm,
在Rt△AED中,AD= =2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為爭創(chuàng)文明城市,我市交警部門在全市范圍開展了安全使用電瓶車專項(xiàng)宣傳活動(dòng).在活動(dòng)前和活動(dòng)后分別隨機(jī)抽取了部分使用電瓶車的市民,就騎電瓶車戴安全帽情況進(jìn)行問卷調(diào)查,并將兩次收集的數(shù)據(jù)制成如下統(tǒng)計(jì)圖表.
類別 | 人數(shù) | 百分比 |
A | 68 | 6.8% |
B | 245 | b% |
C | a | 51% |
D | 177 | 17.7% |
總計(jì) | c | 100% |
根據(jù)以上提供的信息解決下列問題:
(1)a= ,b= c=
(2)若我市約有30萬人使用電瓶車,請(qǐng)分別計(jì)算活動(dòng)前和活動(dòng)后全市騎電瓶車“都不戴”安全帽的人數(shù).
(3)經(jīng)過某十字路口,汽車無法繼續(xù)直行只可左轉(zhuǎn)或右轉(zhuǎn),電動(dòng)車不受限制,現(xiàn)有一輛汽車和一輛電動(dòng)車同時(shí)到達(dá)該路口,用畫樹狀圖或列表的方法求汽車和電動(dòng)車都向左轉(zhuǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C是⊙O上的三個(gè)點(diǎn),點(diǎn)D在BC的延長線上.有如下四個(gè)結(jié)論:①在∠ABC所對(duì)的弧上存在一點(diǎn)E,使得∠BCE=∠DCE;②在∠ABC所對(duì)的弧上存在一點(diǎn)E,使得∠BAE=∠AEC;③在∠ABC所對(duì)的弧上存在一點(diǎn)E,使得EO平分∠AEC;④在∠ABC所對(duì)的弧上任意取一點(diǎn)E(不與點(diǎn)A,C重合) ,∠DCE=∠ABO +∠AEO均成立.上述結(jié)論中,所有正確結(jié)論的序號(hào)是( )
A. ①②③ B. ①③④ C. ②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小正方形組成網(wǎng)格圖中,四邊形 ABCD 的頂點(diǎn)都在格點(diǎn)上,如圖所示.則下列結(jié)論錯(cuò) 誤的是( )
A.B.
C.四邊形是菱形D.將邊向右平移格,再向上平移格就與邊重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,AC=2,BD=2 3 ,AC,BD相交于點(diǎn)O.
(1)求邊AB的長;
(2)如圖2,將一個(gè)足夠大的直角三角板60°角的頂點(diǎn)放在菱形ABCD的頂點(diǎn)A處,繞點(diǎn)A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點(diǎn)E,F(xiàn),連接EF與AC相交于點(diǎn)G.
①判斷△AEF是哪一種特殊三角形,并說明理由;
②旋轉(zhuǎn)過程中,當(dāng)點(diǎn)E為邊BC的四等分點(diǎn)時(shí)(BE>CE),求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長、寬均為3,高為8的長方體容器,放置在水平桌面上,里面盛有水,水面高為6,繞底面一棱長進(jìn)行旋轉(zhuǎn)傾斜后,水面恰好觸到容器口邊緣,圖2是此時(shí)的示意圖,則圖2中水面高度為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC中,∠C=90°,AC=3cm,BC=4cm,點(diǎn)P是邊BC上由B向C運(yùn)動(dòng)(不與點(diǎn)B、C重合)的一動(dòng)點(diǎn),P點(diǎn)的速度是1cm/s,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t,過P點(diǎn)作AC的平行線交AB與點(diǎn)N,連接AP,
(1)請(qǐng)用含有t的代數(shù)式表示線段AN和線段PN的長,
(2)當(dāng)t為何值時(shí),△APN的面積等于△ACP面積的三分之一?
(3)在點(diǎn)P的運(yùn)動(dòng)過程中,是否存在某一時(shí)刻的t的值,使得△APN的面積有最大值,若存在請(qǐng)求出t的值并計(jì)算最大面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com