精英家教網 > 初中數學 > 題目詳情

【題目】如圖,一只螞蟻從O點出發(fā),沿著扇形OAB的邊緣勻速爬行一周,當螞蟻運動的時間為t時,螞蟻與O點的距離為s,則s關于t的函數圖象大致是( 。

A.
B.
C.
D.

【答案】B
【解析】解:一只螞蟻從O點出發(fā),沿著扇形OAB的邊緣勻速爬行,在開始時經過半徑OA這一段,螞蟻到O點的距離隨運動時間t的增大而增大;
到弧AB這一段,螞蟻到O點的距離S不變,圖象是與x軸平行的線段;走另一條半徑OB時,S隨t的增大而減。
故選:B.
【考點精析】本題主要考查了函數的圖象的相關知識點,需要掌握函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應的任務.

幾何中,平行四邊形、矩形、菱形、正方形和等腰梯形都是特殊的四邊形,大家對于它們的性質都非常熟悉,生活中還有一種特殊的四邊形﹣﹣箏形.所謂箏形,它的形狀與我們生活中風箏的骨架相似.
定義:兩組鄰邊分別相等的四邊形,稱之為箏形,如圖,四邊形ABCD是箏形,其中AB=AD,CB=CD
判定:①兩組鄰邊分別相等的四邊形是箏形
②有一條對角線垂直平分另一條對角線的四邊形是箏形
顯然,菱形是特殊的箏形,就一般箏形而言,它與菱形有許多相同點和不同點

如果只研究一般的箏形(不包括菱形),請根據以上材料完成下列任務:
如果只研究一般的箏形(不包括菱形),請根據以上材料完成下列任務:
(1)請說出箏形和菱形的相同點和不同點各兩條;
(2)請仿照圖1的畫法,在圖2所示的8×8網格中重新設計一個由四個全等的箏形和四個全等的菱形組成的新圖案,具體要求如下:
①頂點都在格點上;
②所設計的圖案既是軸對稱圖形又是中心對稱圖形;
③將新圖案中的四個箏形都圖上陰影(建議用一系列平行斜線表示陰影).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,點D在邊AC上,DE⊥B于點E,連CE.
(1)如圖1,已知AC=BC,AD=2CD,

①△ADE與△ABC面積之比;
②求tan∠ECB的值;
(2)如圖2,已知 = =k,求tan∠ECB的值(用含k的代數式表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O是正五邊形ABCDE的外接圓,這個正五邊形的邊長為a,半徑為R,邊心距為r,則下列關系式錯誤的是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為推進“傳統(tǒng)文化進校園”活動,某校準備成立“經典誦讀”、“傳統(tǒng)禮儀”、“民族器樂”和“地方戲曲”等四個課外活動小組.學生報名情況如圖(每人只能選擇一個小組):

(1)
報名參加課外活動小組的學生共有 人,將條形圖補充完整;
(2)扇形圖中m= ,n= ;
(3)根據報名情況,學校決定從報名“經典誦讀”小組的甲、乙、丙、丁四人中隨機安排兩人到“地方戲曲”小組,甲、乙恰好都被安排到“地方戲曲”小組的概率是多少?請用列表或畫樹狀圖的方法說明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】端午節(jié)是我國的傳統(tǒng)節(jié)日,人們有吃粽子的習慣.某校數學興趣小組為了了解本校學生喜愛粽子的情況,隨機抽取了50名同學進行問卷調查,經過統(tǒng)計后繪制了兩幅尚不完整的統(tǒng)計圖(注:每一位同學在任何一種分類統(tǒng)計中只有一種選擇)

請根據統(tǒng)計圖完成下列問題:
(1)扇形統(tǒng)計圖中,“很喜歡”所對應的圓心角為 ;條形統(tǒng)計圖中,喜歡“糖餡”粽子的人數為
(2)若該校學生人數為800人,請根據上述調查結果,估計該校學生中“很喜歡”和“比較喜歡”粽子的人數之和;
(3)小軍最愛吃肉餡粽子,小麗最愛吃糖餡粽子.某天小霞帶了重量、外包裝完全一樣的肉餡、糖餡、棗餡、海鮮餡四種粽子各一只,讓小軍、小麗每人各選一只.請用樹狀圖或列表法求小軍、小麗兩人中有且只有一人選中自己最愛吃的粽子的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點M,P,CD交BE于點Q,連接PQ,BM,下面結論:
①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④MB平分∠AMC,
其中結論正確的有( 。

A.1個
B.2個
C.31個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知雙曲線y=(x>0),直線l1:y﹣=k(x﹣)(k<0)過定點F且與雙曲線交于A,B兩點,設A(x1 , y1),B(x2 , y2)(x1<x2),直線l2:y=﹣x+
(1)若k=﹣1,求△OAB的面積S;
(2)
AB= , 求k的值;
(3)設N(0,2),P在雙曲線上,M在直線l2上且PM∥x軸,求PM+PN最小值,并求PM+PN取得最小值時P的坐標.
(參考公式:在平面直角坐標系中,若A(x1 , y1),B(x2 , y2)則A,B兩點間的距離為AB=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在4×4的正方形網格中,每個小正方形的邊長均為1,將△AOB繞點O逆時針旋轉90°得到△COD,則旋轉過程中形成的陰影部分的面積為

查看答案和解析>>

同步練習冊答案