【題目】為推進(jìn)“傳統(tǒng)文化進(jìn)校園”活動,某校準(zhǔn)備成立“經(jīng)典誦讀”、“傳統(tǒng)禮儀”、“民族器樂”和“地方戲曲”等四個課外活動小組.學(xué)生報名情況如圖(每人只能選擇一個小組):

(1)
報名參加課外活動小組的學(xué)生共有 人,將條形圖補充完整;
(2)扇形圖中m= ,n= ;
(3)根據(jù)報名情況,學(xué)校決定從報名“經(jīng)典誦讀”小組的甲、乙、丙、丁四人中隨機安排兩人到“地方戲曲”小組,甲、乙恰好都被安排到“地方戲曲”小組的概率是多少?請用列表或畫樹狀圖的方法說明.

【答案】
(1)

解:∵根據(jù)兩種統(tǒng)計圖知地方戲曲的有13人,占13%,

∴報名參加課外活動小組的學(xué)生共有13÷13%=100人,

參加民族樂器的有100﹣32﹣25﹣13=30人,

統(tǒng)計圖為:

;


(2)25 ;108 
(3)

解:樹狀圖分析如下:

∵共有12種情況,恰好選中甲、乙的有2種,

∴P(選中甲、乙)==


【解析】
解:(2)∵m%=×100%=25%,
∴m=25,
n=×360=108,
故答案為:25,108;
(1)用地方戲曲的人數(shù)除以其所占的百分比即可求得總?cè)藬?shù),減去其它小組的頻數(shù)即可求得民族樂器的人數(shù),從而補全統(tǒng)計圖;
(2)根據(jù)各小組的頻數(shù)和總數(shù)分別求得m和n的值即可;
(3)列樹狀圖將所有等可能的結(jié)果列舉出來,然后利用概率公式求解即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△A1A2A3 , △A3A4A5 , △A5A6A7 , △A7A8A9 , …,都是等邊三角形,且點A1 , A3 , A5 , A7 , A9的坐標(biāo)分別為A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依據(jù)圖形所反映的規(guī)律,則A100的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展“校園文化節(jié)“活動,對學(xué)生參加書法比賽的作品按A、B、C、D四個等級進(jìn)行了評定.現(xiàn)隨機抽取部分參賽學(xué)生書法作品的評定結(jié)果進(jìn)行統(tǒng)計分析,并將分析結(jié)果繪制成如圖扇形統(tǒng)計圖(圖①)和條形統(tǒng)計圖(圖②),根據(jù)所給信息完成下列問題:
(1)本次抽取的樣本的容量為;
(2)在圖①中,C級所對應(yīng)的扇形圓心角度數(shù)是;
(3)請在圖②中將條形統(tǒng)計圖補充完整;
(4)已知該校本次活動學(xué)生參賽的書法作品共750件,請你估算參賽作品中A級和B級作品共多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=k1x+b與反比例函數(shù)y2= 的圖象交于點A(4,m)和B(﹣8,﹣2),與y軸交于點C.
(1)m= , k1=;
(2)當(dāng)x的取值是時,k1x+b> ;
(3)過點A作AD⊥x軸于點D,點P是反比例函數(shù)在第一象限的圖象上一點.設(shè)直線OP與線段AD交于點E,當(dāng)S四邊形ODAC:SODE=3:1時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列圖形規(guī)律:當(dāng)n= 時,圖形“●”的個數(shù)和“△”的個數(shù)相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一只螞蟻從O點出發(fā),沿著扇形OAB的邊緣勻速爬行一周,當(dāng)螞蟻運動的時間為t時,螞蟻與O點的距離為s,則s關(guān)于t的函數(shù)圖象大致是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(1﹣,1+)在雙曲線y=(x<0)上.

(1)求k的值;
(2)在y軸上取點B(0,1),為雙曲線上是否存在點D,使得以AB,AD為鄰邊的平行四邊形ABCD的頂點C在x軸的負(fù)半軸上?若存在,求出點D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點.

(1)求BC的長;
(2)過點D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某景區(qū)有一出索道游覽山谷的旅游點,已知索道兩端距離AB為1300米,在山腳C點測得BC的距離為500米,∠ACB=90°,在C點觀測山峰頂點A的仰角∠ACD=23.5°,求山峰頂點A到C點的水平面高度AD.(參考數(shù)據(jù):sin23.5°≈0.40,cos23.5°=0.92,tan23.5°=0.43)

查看答案和解析>>

同步練習(xí)冊答案