【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4,AB=7,

1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;

2)求DE的長度;

3BEDF的位置關(guān)系如何?

【答案】(1)旋轉(zhuǎn)角度為90°270°;(2DE= 3;(3BEDF是垂直關(guān)系.

【解析】試題分析:先根據(jù)正方形的性質(zhì)得到:△AFD≌△AEB,從而得出等量關(guān)系AE=AF=4∠EAF=90°,∠EBA=∠FDA,找到旋轉(zhuǎn)中心和旋轉(zhuǎn)角度.這些等量關(guān)系即可求出DE=AD﹣AE=7﹣4=3BE⊥DF

解:(1)根據(jù)正方形的性質(zhì)可知:△AFD≌△AEB,即AE=AF=4,∠EAF=90°∠EBA=∠FDA;

可得旋轉(zhuǎn)中心為點(diǎn)A;旋轉(zhuǎn)角度為90°270°

2DE=AD﹣AE=7﹣4=3;

3∵∠EAF=90°,∠EBA=∠FDA

延長BEDF相交于點(diǎn)G,則∠GDE+∠DEG=90°

∴BE⊥DF,

BEDF是垂直關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中.∠A=90°.AB=AC,BC=20,DE是△ABC的中位線.點(diǎn)M是邊BC上一點(diǎn).BM=3.點(diǎn)N是線段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DN與ME相交于點(diǎn)O.若△OMN是直角三角形,則DO的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲是一個(gè)長為2m,寬為2n的長方形,沿圖中的虛線剪成四個(gè)全等的小長方形,再按圖乙圍成一個(gè)較大的正方形.

(1)請(qǐng)用兩種方法表示圖中陰影部分面積(只需表示,不必化簡);
(2)比較(1)兩種結(jié)果,你能得到怎樣的等量關(guān)系?
請(qǐng)你用(2)中得到等量關(guān)系解決下面問題:如果m﹣n=5,mn=14,求m+n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明所在城市的“階梯水價(jià)”收費(fèi)辦法是:每戶用水不超過5噸,每噸水費(fèi)x元;超過5噸,超過部分每噸加收2元,小明家今年5月份用水9噸,共交水費(fèi)為44元,根據(jù)題意列出關(guān)于x的方程正確的是( )
A.5x+4(x+2)=44
B.5x+4(x﹣2)=44
C.9(x+2)=44
D.9(x+2)﹣4×2=44

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的部分圖象如圖所示,則關(guān)于的一元二次方程的解為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)三角形的三邊為2、5、x,另一個(gè)三角形的三邊為y、2、4,若這兩個(gè)三角形全等,則x+y=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽的半徑約為696300km.696 300這個(gè)數(shù)用科學(xué)記數(shù)法可表示為( )
A.0.696 3×106
B.6.963×105
C.69.63×104
D.696.3×103

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°.

(1)如圖1,當(dāng)點(diǎn)A、C、D在同一條直線上時(shí),AC=12,EC=5.
①求證:AF⊥BD,
②求AF的長度;
(2)如圖2,當(dāng)點(diǎn)A、C、D不在同一條直線上時(shí).求證:AF⊥BD;
(3)如圖3,在(2)的條件下,連接CF并延長CF交AD于點(diǎn)G,∠AFG是一個(gè)固定的值嗎?若是,求出∠AFG的度數(shù),若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公共汽車上有20人,到達(dá)某站后,下車m人,上車n人,這時(shí)車上共有______人.

查看答案和解析>>

同步練習(xí)冊答案