【題目】已知二次函數(shù)的部分圖象如圖所示,則關(guān)于的一元二次方程的解為 .
【答案】x1=-1或x2=3.
【解析】試題分析:由二次函數(shù)y=-x2+2x+m的部分圖象可以得到拋物線的對稱軸和拋物線與x軸的一個交點坐標(biāo),然后可以求出另一個交點坐標(biāo),再利用拋物線與x軸交點的橫坐標(biāo)與相應(yīng)的一元二次方程的根的關(guān)系即可得到關(guān)于x的一元二次方程-x2+2x+m=0的解.
試題解析:依題意得二次函數(shù)y=-x2+2x+m的對稱軸為x=1,與x軸的一個交點為(3,0),
∴拋物線與x軸的另一個交點橫坐標(biāo)為1-(3-1)=-1,
∴交點坐標(biāo)為(-1,0)
∴當(dāng)x=-1或x=3時,函數(shù)值y=0,
即-x2+2x+m=0,
∴關(guān)于x的一元二次方程-x2+2x+m=0的解為x1=-1或x2=3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列一段文字,然后回答下列問題.
已知在平面內(nèi)兩點P1(x1 , y1)、P2(x2 , y2),其兩點間的距離 ,
同時,當(dāng)兩點所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點間距離公式可簡化為|x2﹣x1|或|y2﹣y1|.
(1)已知A(2,4)、B(﹣3,﹣8),試求A、B兩點間的距離;
(2)已知A、B在平行于y軸的直線上,點A的縱坐標(biāo)為4,點B的縱坐標(biāo)為﹣1,試求A、B兩點間的距離;
(3)已知一個三角形各頂點坐標(biāo)為D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形狀嗎?說明理由;
(4)平面直角坐標(biāo)中,在x軸上找一點P,使PD+PF的長度最短,求出點P的坐標(biāo)以及PD+PF的最短長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文藝團體為“希望工程”募捐組織了一場義演,共售出2000張票,籌得票款13600元.已知學(xué)生票5元/張,成人票8元/張,問成人票與學(xué)生票各售出多少張?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景點的門票價格如表:
購票人數(shù)/人 | 1~50 | 51~100 | 100以上 |
每人門票價/元 | 12 | 10 | 8 |
某校七年級(1)、(2)兩班計劃去游覽該景點,其中(1)班人數(shù)少于50人,(2)班人數(shù)多于50人且少于100人,如果兩班都以班為單位單獨購票,則一共支付1118元;如果兩班聯(lián)合起來作為一個團體購票,則只需花費816元.
(1)兩個班各有多少名學(xué)生?
(2)團體購票與單獨購票相比較,兩個班各節(jié)約了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4,AB=7,
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求DE的長度;
(3)BE與DF的位置關(guān)系如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點,點A是函數(shù) (x<0)圖象上一點,AO的延長線交函數(shù) (x>0,k>0的常數(shù))的圖象于點C,點A關(guān)于y軸的對稱點為A′,點C關(guān)于x軸的對稱點為C′且點O、A′、C′在同一條直線上,連接CC′,交x軸于點B,連接AB,AA′,A′C′,若△ABC的面積等于6,則由線段AC,CC′,C′A′,A′A所圍成的圖形的面積等于
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com