【題目】如圖,AB是半圓O的直徑,點(diǎn)P在BA的延長線上,PD切⊙O于點(diǎn)C,BD⊥PD,垂足為D,連接BC
(1)求證:BC平分∠PBD;
(2)求證:PC2=PAPB;
(3)若PA=2,PC=2 ,求陰影部分的面積(結(jié)果保留π)
【答案】
(1)證明:連接OC,
∵PD切⊙O于點(diǎn)C,
∴OC⊥PD,
∵BD⊥PD,
∴BD∥OC,
∴∠DBC=∠BCO,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠OBC=∠CBD,
∴BC平分∠PBD
(2)證明:連接AC,
∵AB是半圓O的直徑,
∴∠ACB=90°,
∴∠ACO+∠BCO=∠ACO+∠ABC=90°,
∵∠PCA+∠ACO=90°,
∴∠ACP=∠ABC,
∵∠P=∠P,
∴△ACP∽△CBP,
∴ ,
∴PC2=PAPB
(3)解:∵PC2=PAPB,PA=2,PC=2 ,
∴PB=6,
∴AB=4,
∴OC=2,PO=4,
∴∠POC=60°,
∴S陰影=S△POC﹣S扇形= 2 ×2﹣ =2 ﹣ π.
【解析】(1)連接OC,由PD切⊙O于點(diǎn)C,得到OC⊥PD,根據(jù)平行線的性質(zhì)得到∠DBC=∠BCO,根據(jù)的預(yù)計(jì)實(shí)現(xiàn)的性質(zhì)得到∠OCB=∠OBC,等量代換得到∠OBC=∠CBD,于是得到即可;(2)連接AC,由AB是半圓O的直徑,得到∠ACB=90°,推出∠ACP=∠ABC,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)根據(jù)圖形的面積公式即可得到結(jié)果.
【考點(diǎn)精析】本題主要考查了角平分線的性質(zhì)定理和切線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)﹣0.5﹣(﹣3 )+2.75﹣(+7)
(2)(+﹣)×(﹣12)
(3)(﹣2)3÷ ×2
(4)﹣12﹣ ×[2﹣(﹣4)2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=﹣ x+3與坐標(biāo)軸分別交于點(diǎn)A,B,點(diǎn)P在拋物線y=﹣ (x﹣ )2+4上,能使△ABP為等腰三角形的點(diǎn)P的個(gè)數(shù)有( )
A.3個(gè)
B.4個(gè)
C.5個(gè)
D.6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算或化簡:
(1)計(jì)算:2﹣1+ cos30°+|﹣5|﹣(π﹣2017)0
(2)化簡:(x﹣5+ )÷ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在平行四邊形ABCD中,點(diǎn)E、F、G、H分別在邊AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求證:
(1)△AEH≌△CGF;
(2)四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)分別為a,b,且點(diǎn)A在點(diǎn)B的左邊,|a|=10,a+b=80,ab<0.
(1)求出a,b的值;
(2)現(xiàn)有一只電子螞蟻P從點(diǎn)A出發(fā),以3個(gè)單位長度/秒的速度向右運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q從點(diǎn)B出發(fā),以2個(gè)單位長度/秒的速度向左運(yùn)動(dòng).
①設(shè)兩只電子螞蟻在數(shù)軸上的點(diǎn)C相遇,求出點(diǎn)C對(duì)應(yīng)的數(shù)是多少?
②經(jīng)過多長時(shí)間兩只電子螞蟻在數(shù)軸上相距20個(gè)單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB=8cm,C是線段AB上一點(diǎn),AC=3.2cm,M是AB的中點(diǎn),N是AC的中點(diǎn).
(1)求線段CM的長;
(2)求線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩地相距200km,快車速度為120 ,慢車速度為80 ,慢車從甲地出發(fā),快車從乙地出發(fā),
(1)如果兩車同時(shí)出發(fā),相向而行,出發(fā)后幾時(shí)兩車相遇?相遇時(shí)離甲地多遠(yuǎn)?
(2)如果兩車同時(shí)出發(fā),同向(從乙開始向甲方向)而行,出發(fā)后幾時(shí)兩車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示的有理數(shù)為﹣6,點(diǎn)B表示的有理數(shù)為6,點(diǎn)P從點(diǎn)A出發(fā)以每秒4個(gè)單位長度的速度在數(shù)軸上由A向B運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B后立即返回,仍然以每秒4個(gè)單位長度的速度運(yùn)動(dòng)至點(diǎn)A停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).
(1)求t=1時(shí)點(diǎn)P表示的有理數(shù);
(2)求點(diǎn)P與點(diǎn)B重合時(shí)的t值;
(3)在點(diǎn)P沿?cái)?shù)軸由點(diǎn)A到點(diǎn)B再回到點(diǎn)A的運(yùn)動(dòng)過程中,求點(diǎn)P與點(diǎn)A的距離(用含t的代數(shù)式表示);
(4)當(dāng)點(diǎn)P表示的有理數(shù)與原點(diǎn)的距離是2個(gè)單位長度時(shí),請(qǐng)求出所有滿足條件的t值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com