【題目】甲、乙兩工程隊維修同一段路面,甲隊先清理路面,乙隊在甲隊清理后鋪設路面.乙隊在中途停工了一段時間,然后按停工前的工作效率繼續(xù)工作.在整個工作過程中,甲隊清理完的路面長y(m)與時間x(h)的函數(shù)圖象為線段OA,乙隊鋪設完的路面長y(m)與時間x(h)的函數(shù)圖象為折線BC—CD—DE,如圖所示,從甲隊開始工作時計時.
(1)求乙隊鋪設完的路面長y(m)與時間x(h)的函數(shù)解析式;
(2)當甲隊清理完路面時,乙隊還有多少米的路面沒有鋪設完?
【答案】(1)y=;(2)當甲隊清理完路面時,乙隊還有72.5m的路面沒有鋪設完.
【解析】(1)求出乙隊鋪設路面的工作效率,計算出乙隊完成需要的時間求出E的坐標,由待定系數(shù)法就可以求出結(jié)論.
(2)由(1)的結(jié)論求出甲隊完成的時間,把時間代入乙的解析式就可以求出結(jié)論.
(1)設線段BC所在直線對應的函數(shù)解析式為y=x+.
∵圖象經(jīng)過(3,0),(5,50),
∴
解得
∴線段BC所在直線對應的函數(shù)解析式為y=25x-75.
設線段DE所在直線對應的函數(shù)解析式為y=x+,
∵乙隊按停工前的工作效率為50÷(5-3)=25,
∴乙隊剩下的需要的時間為(160-50)÷25=,
∴E(10.9,160),
∴
解得
∴線段DE所在直線對應的函數(shù)解析式為y=25x-112.5,
乙隊鋪設完的路面長y(m)與時間x(h)的函數(shù)解析式為
y=
(2)由題意,得
甲隊每小時清理路面的長為100÷5=20,
甲隊清理完路面的時間x=160÷20=8,
把x=8代入y=25x-112.5,
得y=25×8-112.5=87.5,
當甲隊清理完路面時,乙隊鋪設完的路面長為87.5m,
即160-87.5=72.5(m),
答:當甲隊清理完路面時,乙隊還有72.5m的路面沒有鋪設完.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某高速公路建設中需要確定隧道AB的長度.已知在離地面1500m高度C
處的飛機上,測量人員測得正前方A、B兩點處的俯角分別為60°和45°.求隧道AB的長
(≈1.73).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的材料:
如圖①,若線段AB在數(shù)軸上,A,B點表示的數(shù)分別為a,b(b>a),則線段AB的長(點A到點B的距離)可表示為AB=b﹣a
請用上面材料中的知識解答下面的問題:
如圖②,一個點從數(shù)軸上的原點開始,先向左移動1cm到達A點,再向左移動2cm到達B點,然后向右移動7cm到達C點,用1個單位長度表示1cm
(1)請你在數(shù)軸上表示出A,B,C三點的位置,并直接寫出線段AC的長度;
(2)若數(shù)軸上有一點D,且AD=4cm,則點D表示的數(shù)是什么?
(3)若將點A向右移動xcm,請用代數(shù)式表示移動后的點表示的數(shù)?
(4)若點B以每秒2cm的速度向左移動至點P1,同時點A,點C分別以每秒1cm和4cm的速度向右移動至點P2,點P3,設移動時間為t秒,試探索:P3P2﹣P1P2的值是否會隨著t的變化而變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,E為矩形ABCD邊AD上一點,點P從點B沿折線BE﹣ED﹣DC運動到點C時停止,點Q從點B沿BC運動到點C時停止,它們運動的速度都是1cm/s.若P,Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的是( )
A.AE=6cm
B.sin∠EBC=
C.當0<t≤10時,y= t2
D.當t=12s時,△PBQ是等腰三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形OABC中,BC∥AO,O(0,0),A(10,0),B(10,4),BC=2,G(t,0)是底邊OA上的動點.
(1)tan∠OAC= .
(2)邊AB關(guān)于直線CG的對稱線段為MN,若MN與△OAC的其中一邊平行時,則t=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.
(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(提出問題)
如圖①,點、、在同一條直線上,,,且,,易證≌.
(類比探究)
()如圖②,在和中,,若,,.求證:≌.
(知識應用)
()如圖②,在和中,,若,,,若的度數(shù)是的倍,則__________.
(數(shù)學思考)
()如圖②,在和中,,若,,當≌時,__________.(結(jié)果用含有的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫理由:如圖所示
∵DF∥AC(已知),
∴∠D+∠DBC=180°.( )
∵∠C=∠D(已知),
∴∠C+ =180°.( )
∴DB∥EC( )
∴∠D=∠CEF.( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,格點△ABC在平面直角坐標系中的位置如圖所示.
(1)將△ABC先向下平移4個單位長度,再向右平移3個單位長度,畫出平移后的△A1B1C1,并寫出頂點B1的坐標;
(2)作△ABC關(guān)于y軸的對稱圖形△A2B2C2,并寫出頂點B2的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com