27、閱讀材料并解答問(wèn)題:

如圖①,將6個(gè)小長(zhǎng)方形(或正方形)既無(wú)空隙,又不重疊地拼成一個(gè)大的長(zhǎng)方形,根據(jù)圖示尺寸,它的面積既可以表示為(2a+b)(a+b),又可以表示為2a2+3ab+b2,因此,我們可以得到一個(gè)等式:(2a+b)(a+b)=2a2+3ab+b2
(1)請(qǐng)寫(xiě)出圖②所表示的等式:
(a+2b)(2a+b)=2a2+5ab+2b2

(2)試畫(huà)出一個(gè)幾何圖形,使它的面積能表示:(a+b)(a+3b)=a2+4ab+3b2(請(qǐng)仿照?qǐng)D①或圖②在幾何圖形上標(biāo)出有關(guān)數(shù)量).
分析:(1)圖②中的圖形為長(zhǎng)方形,長(zhǎng)方形的面積等于:(2a+b)(a+2b),同時(shí)長(zhǎng)方形的面積還等于各小圖形的面積總和,令兩面積相等即可得出等式.
(2)根據(jù)(1)的分析,要畫(huà)的幾何圖形是一個(gè)長(zhǎng)方形,長(zhǎng)為(a+3b),寬為:(a+b).這個(gè)長(zhǎng)方形有以下圖形組成:一個(gè)邊長(zhǎng)為a的正方形,4個(gè)以a,b為長(zhǎng)和寬的長(zhǎng)方形,3個(gè)以b為邊長(zhǎng)的正方形.
解答:解:(1)利用長(zhǎng)乘以寬得長(zhǎng)方形的面積為:(2a+b)(a+2b),將各小圖形相加得長(zhǎng)方形的面積為:2a2+5ab+2b2.令兩面積相等得等式:(2a+b)(a+2b)=2a2+5ab+2b2

(2)根據(jù)分析畫(huà)出圖形得:
點(diǎn)評(píng):本題解題關(guān)鍵是利用不同的方法算出長(zhǎng)方形的面積,然后令面積值相等即可得出等式.第二問(wèn)是根據(jù)所給的等式得出長(zhǎng)方形的長(zhǎng)和寬,根據(jù)等式右邊等出都有哪些小圖形組成,然后由這些條件作圖.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料并解答問(wèn)題:
我國(guó)是最早了解和應(yīng)用勾股定理的國(guó)家之一,古代印度、希臘、阿拉伯等許多國(guó)家也都很重視對(duì)勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先證明了勾股定理,在西方,勾股定理又稱(chēng)為“畢達(dá)哥拉斯定理”.
關(guān)于勾股定理的研究還有一個(gè)很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個(gè)正整數(shù)稱(chēng)為勾股數(shù)”,以下是畢達(dá)哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股數(shù).
方法2:若任取兩個(gè)正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長(zhǎng)的△ABC是直角三角形;
(2)請(qǐng)根據(jù)方法1和方法2按規(guī)律填寫(xiě)下列表格:
精英家教網(wǎng)
(3)某園林管理處要在一塊綠地上植樹(shù),使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個(gè)全等的直角三角形組成,要求每個(gè)三角形頂點(diǎn)處都植一棵樹(shù),各邊上相鄰兩棵樹(shù)之間的距離均為1米,如果每個(gè)三角形最短邊上都植6棵樹(shù),且每個(gè)三角形的各邊長(zhǎng)之比為5:12:13,那么這四個(gè)直角三角形的邊長(zhǎng)共需植樹(shù)
 
棵.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料并解答問(wèn)題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.
精英家教網(wǎng)
(1)如圖1,當(dāng)n=3時(shí),設(shè)AB切⊙P于點(diǎn)C,連接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=
1
2
∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC=
1
2
360°
3
=60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=
1
2
•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如圖2,當(dāng)n=4時(shí),仿照(1)中的方法和過(guò)程可求得:S正四邊形=4S△OAB=
 

(3)如圖3,當(dāng)n=5時(shí),仿照(1)中的方法和過(guò)程求S正五邊形
(4)如圖4,根據(jù)以上探索過(guò)程,請(qǐng)直接寫(xiě)出S正n邊形=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

24、閱讀材料并解答問(wèn)題:
很多代數(shù)原理,可以用幾何模型來(lái)表示.例如:代數(shù)恒等式(2a+b)(a+b)=2a2+3ab+b2,可以用圖1或圖2等圖形的面積表示.

(1)請(qǐng)寫(xiě)出圖3所表示的代數(shù)恒等式:
(a+2b)(2a+b)=2a2+5ab+2b2

(2)試畫(huà)出一個(gè)幾何圖形,使它的面積能表示:(a+b)(a+3b)=a2+4ab+3b2
(3)下列有幾張如圖所示的卡片,用它們拼一些新的圖形,驗(yàn)證下列兩個(gè)公式:
(1)(a-b)2=a2-2ab+b2    (2)(a+b)2-(a-b)2=4ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料并解答問(wèn)題
如圖①,以Rt△ABC的直角邊AB、AC為邊分別向外作正方形ABDE和正方形ACFG,連接EG,可以得出結(jié)論△ABC的面積與△AEG的面積相等.
(1)在圖①中的△ABC的直角邊AB上任取一點(diǎn)H,連接CH,以BH、HC為邊分別向外作正方形HBDE和正方形HCFG,連接EG,得到圖②,則△HBC的面積與△HEG的面積的大小關(guān)系為
 

(2)如圖③,若圖形總面積是a,其中五個(gè)正方形的面積和是b,則圖中陰影部分的面積是
 

(3)如圖④,點(diǎn)A、B、C、D、E都在同一直線上,四邊形X、Y、Z都是正方形,若圖形總面積是m,正方形Y的面積是n,則圖中陰影部分的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料并解答問(wèn)題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相切的圓叫做正四邊形的內(nèi)切圓,…,與正n邊形各邊都相切的圓叫做正n邊形的內(nèi)切圓,設(shè)正n(n≥3)邊形的面積為S正n邊形,其內(nèi)切圓的半徑為r,試探索正n邊形的面積.(結(jié)果可用三角函數(shù)表示)
如圖①,當(dāng)n=3時(shí),設(shè)AB切圓O于點(diǎn)C,連接OC,OA,OB,∴OC⊥AB,OA=OB,∴∠AOC=
1
2
AOB
,AB=2BC.
在Rt△AOC中,∵∠AOC=
1
2
360°
3
=60°
,OC=r,∴AC=r•tan60°,AB=2r•tan60°,∴S△OAB=
1
2
•r•2rtan60°=r2tan60°
,∴S正三角形=3S△OAB=3r2•tan60°.
(1)如圖②,當(dāng)n=4時(shí),仿照(1)中的方法和過(guò)程可求得:S正四邊形=
 

(2)如圖③,當(dāng)n=5時(shí),仿照(1)中的方法和過(guò)程求S正五邊形
(3)如圖④,根據(jù)以上探索過(guò)程,請(qǐng)直接寫(xiě)出S正n邊形=
 

精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案