【題目】便民服裝店的老板在株洲看到一種夏季襯衫,就用8000元購進若干件,以每件58元的價格出售,很快售完,又用17600元購進同種襯衫,數(shù)量是第一次的2倍每件進價比第一次多了4元,服裝店仍按每件58元出售,全部售完,問該服裝店兩次一共盈利多少元?
【答案】服裝店兩次一共贏利9200元.
【解析】
設(shè)第1次進價為x元,則第2次進價為(x+4)元,則第1次進貨數(shù)量表示為 件,第2次進貨數(shù)量為件,根據(jù)第2次進貨數(shù)量是第1次進貨數(shù)量的2倍列出方程可求出兩次的進貨價格,進而可求出進貨數(shù)量,即可求得利潤.
設(shè)從株洲第1次進貨每件為x元,則第2次進貨每件為(x+4)元.
依題意得:2×=
解得x=40,
經(jīng)檢驗:x=40是原方程的解,
所以共進襯衫數(shù)量為+=600(件).
贏利數(shù)為:600×58-(8000+17600)=9200(元).
答:服裝店兩次一共贏利9200元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某小區(qū)實施供暖改造工程,現(xiàn)甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中,正確的個數(shù)有( )個.
①甲隊每天挖100米;
②乙隊開挖兩天后,每天挖50米;
③當(dāng)x=4時,甲、乙兩隊所挖管道長度相同;
④甲隊比乙隊提前2天完成任務(wù).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于A,B與y軸交于C,過C作x軸的平行線交拋物線于點D,過點D作x軸的垂線交x軸于E,點D的坐標(biāo)為(2,3)
(1)求拋物線的解析式;
(2)點P為第一象限直線DE右側(cè)拋物線上一點,連接AP交y軸于點F,連接PD、DF,設(shè)點P的橫坐標(biāo)為t,△PFD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,點P向下平移3個單位得到點Q,連接AQ、EQ,若∠AQE=45°,求點P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某棵樹的高度,小明用長為2m的竹竿作測量工具,移動竹竿,使竹竿頂端的影子與樹的頂端的影子恰好落在地面的同一點.此時竹竿與這一點相距5m,與樹相距10m,則樹的高度為( )
A.5m
B.6m
C.7m
D.8m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上張老師將課本頁第題進行了改編,圖形不變.請你完成下面問題.
如圖,.求證:
如圖,.求證:
如圖,求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,點E在正方形ABCD內(nèi),對角線AC上有一點P使PE+PD的和最小,這個最小值為( )
A. B. C. 3 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
求證:(1)△ACE≌△BCD;(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算與因式分解:
(1)計算:
①;②(﹣2x﹣y)(y﹣2x)﹣(2x+y)2;
(2)因式分解:
①2x2﹣4x+2;②a2(x﹣y)+9b2(y﹣x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的是A,B,C,D三點,按如下步驟作圖:①先分別以A,B兩點為圓心,以大于 AB的長為半徑作弧,兩弧相交于M、N兩點,作直線MN;②再分別以B,C兩點為圓心,以大于 的長為半徑作弧,兩弧相交于G,H兩點,作直線GH,GH與MN交于點P,若∠BAC=66°,則∠BPC等于( )
A.100°
B.120°
C.132°
D.140°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com