【題目】已知,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),且AB=4,頂點P(3,-4).
(1)求拋物線的解析式;
(2)若點M在拋物線上,且△MAB的面積為24,求M點的坐標.
【答案】(1)y=x2-6x+5;(2)M1(-1,12),M2(7,12)
【解析】
(1)先求出拋物線的對稱軸,從而求出點A和點B的坐標,設拋物線的解析式為:y=a(x-3)2-4,將點B的坐標代入即可求出結論;
(2)設點M(m,m2-6m+5),根據(jù)三角形的面積公式可得AB|m2-6m+5|=24,解一元二次方程即可求出結論.
解:(1)∵拋物線的頂點P(3,-4),
∴拋物線的對稱軸為直線x=3.
又在x軸上所截得的線段AB的長為4,
∴點A、B到對稱軸的距離為2.
∴點A的坐標為(1,0),點B的坐標為(5,0).
設拋物線的解析式為:y=a(x-3)2-4.
將點B(5,0)代入可得:0=a(5-3)2-4.
解得a=1.
故拋物線的解析式為:y=(x-3)2-4,即y=x2-6x+5.
(2)設點M(m,m2-6m+5),
∵S△MAB=24,
∴AB|m2-6m+5|=24,即m2-6m+5=±12.
∴m2-6m+5=12或m2-6m+5=-12.
由m2-6m+5=12得m2-6m-7=0.
解得:x1=-1,x2=7,
∴M1(-1,12),M2(7,12);
由m2-6m+5=-12得m2-6m+17=0.
=(-6)2-4×17=-32<0.
∴方程無解,舍去.
綜上:M1(-1,12),M2(7,12).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜邊在x軸上、斜邊長分別為2,4,6,…的等腰直角三角形.若△A1A2A3的頂點坐標分別為A1(2,0),A2(1,﹣1),A3(0,0),則依圖中所示規(guī)律,A2019的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是ABC的外接圓,AB為直徑,∠BAC的平分線交于點D,過點D作DEAC分別交AC、AB的延長線于點E、F.
(1)求證:EF是的切線;
(2)若AC=4,CE=2,求的長度.(結果保留)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過,,與y軸交于點C,點P是拋物線上BC上方的一個動點.
(1)求這條拋物線對應的函數(shù)表達式:
(2)當PAC的面積時,求點P的坐標;
(3)若拋物線上有另一動點Q,滿足BC平分,過點O作PQ的平行線交拋物線于點D,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2,一個銳角等于60°的菱形紙片,小芳同學將一個三角形紙片的一個頂點與該菱形頂點D重合,按順時針方向旋轉(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點E、F,∠EDF=60°,當CE=AF時,如圖1小芳同學得出的結論是DE=DF.
(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當CE≠AF時,如圖2小芳的結論是否成立?若成立,加以證明;若不成立,請說明理由;
(2)再次旋轉(zhuǎn)三角形紙片,當點E、F分別在CB、BA的延長線上時,如圖3請直接寫出DE與DF的數(shù)量關系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關系式,并指出當x為何值時,y有最小值,最小值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=,將△ACB繞點A逆時針旋轉(zhuǎn)60°得到△AC′B′,則CB′的長為( )
A. +B. 1+C. 3D. +
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,拋物線的頂點為,經(jīng)過拋物線上的兩點和的直線交拋物線的對稱軸于點.
(1)求拋物線的解析式和直線的解析式.
(2)在拋物線上兩點之間的部分(不包含兩點),是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由.
(3)若點在拋物線上,點在軸上,當以點為頂點的四邊形是平行四邊形時,直接寫出滿足條件的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,正方形ABCD的邊長為4,取AB邊上的中點E,連接CE,過點B作BF⊥CE于點F,連接DF.過點A作AH⊥DF于點H,交CE于點M,交BC于點N,則MN=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解全校學生上學的交通方式,該校九年級(8)班的5名同學聯(lián)合設計了一份調(diào)查問卷,對該校部分學生進行了隨機調(diào)查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式)設置選項,要求被調(diào)查同學從中單選.并將調(diào)查結果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息,解答下列問題:
(1)本次接受調(diào)查的總?cè)藬?shù)是 人,并把條形統(tǒng)計圖補充完整;
(2)在扇形統(tǒng)計圖中,“步行”的人數(shù)所占的百分比是 ,“其他方式”所在扇形的圓心角度數(shù)是 ;
(3)已知這5名同學中有2名女同學,要從中選兩名同學匯報調(diào)查結果.請你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com