【題目】如圖,長(zhǎng)方形ABCD,AB=9,AD=4. ECD邊上一點(diǎn),CE=6.

(1)求AE的長(zhǎng).

(2)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿著邊BA向終點(diǎn)A運(yùn)動(dòng),連接PE. 設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,則當(dāng)t為何值時(shí),△PAE為等腰三角形?

【答案】34

【解析】試題分析:(1)求出DE=3,AD=4,利用勾股定理即可求出AE的長(zhǎng);
(2)根據(jù)若△PAE為等腰三角形,分三種情況討論:當(dāng)EP=EA時(shí);當(dāng)AP=AE時(shí);當(dāng)PE=PA時(shí).

試題解析:

(1)在長(zhǎng)方形ABCD中,∠D=90°,CDAB=9

RtADE中,DE=9-6=3,AD=4,

AE=5

(2)若PAE為等腰三角形,則有三種可能.

當(dāng)EPEA時(shí),AP=6,

tBP=3

當(dāng)APAE時(shí),則9-t=5,

t=4

當(dāng)PEPA時(shí),則(6-t)2+42=(9-t)2

t

綜上所述,符合要求的t值為34 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016湖北省荊州市第24題)已知在關(guān)于x的分式方程和一元二次方程(2k)x2+3mx+(3k)n=0中,k、m、n均為實(shí)數(shù),方程的根為非負(fù)數(shù).

(1)求k的取值范圍;

(2)當(dāng)方程有兩個(gè)整數(shù)根x1、x2,k為整數(shù),且k=m+2,n=1時(shí),求方程的整數(shù)根;

(3)當(dāng)方程有兩個(gè)實(shí)數(shù)根x1、x2,滿足x1(x1k)+x2(x2k)=(x1k)(x2k),且k為負(fù)整數(shù)時(shí),試判斷|m|2是否成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)Rt△的兩邊長(zhǎng)分別為34,則第三邊長(zhǎng)的平方是(  )

A. 25 B. 14 C. 7 D. 725

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】蓮城超市以10/件的價(jià)格調(diào)進(jìn)一批商品,根據(jù)前期銷售情況,每天銷售量y(件)與該商品定價(jià)x(元)是一次函數(shù)關(guān)系,如圖所示.

1)求銷售量y與定價(jià)x之間的函數(shù)關(guān)系式;

2)如果超市將該商品的銷售價(jià)定為13/件,不考慮其它因素,求超市每天銷售這種商品所獲得的利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為直線AB上的一點(diǎn),∠COE是直角,OF平分∠AOE.

(1)如圖①,若∠COF=34°,則∠BOE=________;若∠COF=m°,則∠BOE=________,∠BOE與∠COF的數(shù)量關(guān)系式為________;

(2)當(dāng)射線OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖②的位置時(shí),(1)中∠BOE與∠COF的數(shù)量關(guān)系是否成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各數(shù):3,0,﹣5,0.48,﹣(﹣7),﹣|﹣8|,(﹣4)2中,負(fù)數(shù)有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正確結(jié)論有(  )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,已知拋物線yax2bxc(a0)的對(duì)稱軸為直線x=-1,且經(jīng)過(guò)A10),C03)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為B.

若直線ymxn經(jīng)過(guò)B,C兩點(diǎn),求直線BC和拋物線的解析式;

在拋物線的對(duì)稱軸x=-1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求點(diǎn)M的坐標(biāo);設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=-1上的一個(gè)動(dòng)點(diǎn),求使BPC為直角三角形的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為

查看答案和解析>>

同步練習(xí)冊(cè)答案