【題目】如圖,在ABC中,ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點(diǎn)E,D,在BC的延長線上取點(diǎn)F,使得BF=EF,EF與AC交于點(diǎn)G.

(1)試判斷直線EF與O的位置關(guān)系,并說明理由;

(2)若OA=2,A=30°,求圖中陰影部分的面積.

【答案】1EF是⊙O的切線,理由見解析;(2

【解析】試題分析:(1)連接OE,根據(jù)等腰三角形的性質(zhì)得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到結(jié)論;(2)由AD是⊙O的直徑,得到∠AED=90°,根據(jù)三角形的內(nèi)角和得到∠EOD=60°,求得∠EGO=30°,根據(jù)三角形和扇形的面積公式即可得到結(jié)論

試題解析:(1)連接OE,

∵OA=OE∴∠A=∠AEO,

∵BF=EF∴∠B=∠BEF,

∵∠ACB=90°,∴∠A+∠B=90°∴∠AEO+∠BEF=90°,

∴∠OEG=90°,∴EF是⊙O的切線;

2∵AD是⊙O的直徑,∴∠AED=90°,

∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,

AO=2,OE=2,EG=2 ,

∴陰影部分的面積==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A21),B(﹣2,4),直線ABy軸交于點(diǎn)C

1)求點(diǎn)C的坐標(biāo);

2)求證:OAB是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)直角三角形的直角頂點(diǎn)重合,AOC40°,求BOD 的度數(shù).

結(jié)合圖形,完成填空:

解法 1

因?yàn)?/span>,

所以

因?yàn)?/span>

所以

所以

解法2

因?yàn)?/span> , ,①

所以 .②

因?yàn)?/span>

所以

在上面①到②的推導(dǎo)過程中,理由依據(jù)是: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市要銷售一種新上市的文具,進(jìn)價(jià)為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件.

1求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤最大,并求出最大的利潤;

2)經(jīng)過試營銷后,超市按(1)中單價(jià)銷售,為了回饋廣大顧客,同時(shí)提高該文具知名度,超市決定在11日當(dāng)天開展降價(jià)促銷活動(dòng),若每件文具降價(jià)2a%,則可多售出4a%,結(jié)果當(dāng)天銷售額為5670元,要使銷量盡可能地大,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為聲援揚(yáng)州“運(yùn)河申遺”,某校舉辦了一次運(yùn)河知識(shí)競(jìng)賽,滿分10分,學(xué)生得分為整數(shù),成績(jī)達(dá)到6分以上(包括6分)為合格,達(dá)到9分以上(包含9分)為優(yōu)秀.這次競(jìng)賽中甲乙兩組學(xué)生成績(jī)分布的條形統(tǒng)計(jì)圖如圖所示.

(1)補(bǔ)充完成下面的成績(jī)統(tǒng)計(jì)分析表:

組別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

6.7

3.41

90%

20%

乙組

7.5

1.69

80%

10%

(2)小明同學(xué)說:“這次競(jìng)賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上表可知,小明是 組的學(xué)生;(填“甲”或“乙”)

(3)甲組同學(xué)說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績(jī)好于乙組.但乙組同學(xué)不同意甲組同學(xué)的說法,認(rèn)為他們組的成績(jī)要好于甲組.請(qǐng)你給出兩條支持乙組同學(xué)觀點(diǎn)的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D是直線外一點(diǎn),在上取兩點(diǎn)A,B,連接AD,分別以點(diǎn)B,D為圓心,AD,AB的長為半徑畫弧,兩弧交于點(diǎn)C,連接CDBC,則四邊形ABCD是平行四邊形,理由是:_________________________

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.

(1如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是__________________;

(2如圖2,若點(diǎn)O正方形的中心(即兩對(duì)角線的交點(diǎn),則(1中的結(jié)論是否仍然成立?請(qǐng)說明理由;

(3如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界,當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過程中可形成什么圖形?

(4如圖4是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說理

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】馬航事件的發(fā)生引起了我國政府的高度重視,我國政府迅速派出了艦船和飛機(jī)到相關(guān)海域進(jìn)行搜尋.如圖,在一次空中搜尋中,水平飛行的飛機(jī)在點(diǎn)A處測(cè)得前方海面的點(diǎn)F處有疑似飛機(jī)殘骸的物體(該物體視為靜止),此時(shí)的俯角為30°.為了便于觀察,飛機(jī)繼續(xù)向前飛行了800m到達(dá)B點(diǎn),此時(shí)測(cè)得點(diǎn)F的俯角為45°.請(qǐng)你計(jì)算當(dāng)飛機(jī)飛臨F點(diǎn)的正上方點(diǎn)C時(shí)(點(diǎn)A,B,C在同一直線上),豎直高度CF約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國務(wù)院辦公廳在2015316日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進(jìn)一步普及足球知識(shí),傳播足球文化,我市某區(qū)在中小學(xué)舉行了足球在身邊知識(shí)競(jìng)賽,各類獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問題:

1)獲得一等獎(jiǎng)的學(xué)生人數(shù);

2)在本次知識(shí)競(jìng)賽活動(dòng)中,A,B,CD四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場(chǎng)足球友誼賽,請(qǐng)用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案