【題目】在一個不透明的袋中有除顏色外其他完全相同的3個球,每次從袋中摸出一個球,記下顏色后放回攪勻再摸,在摸球試驗中得到下表中部分數(shù)據(jù):

摸球

總次數(shù)

40

80

120

160

200

240

280

320

360

400

摸到黃球的次數(shù)

14

23

38

52

67

86

97

111

120

136

摸到黃球的頻率

35%

32%

33%

35%

35%

(1)請將上表補充完整(結(jié)果精確到1%);

(2)制作折線統(tǒng)計圖表示摸到黃球的頻率的變化情況;

(3)估計從袋中摸出一個球是黃球的概率是多少.

【答案】(1)如圖見解析;(2)如圖見解析;(3)估計從袋中摸出一個球是黃球的概率是.

【解析】

1)頻數(shù)與總次數(shù)的比值即頻率,依次計算出表格缺少的數(shù)值即可;

2)根據(jù)(1)的數(shù)據(jù),進而可以制折線統(tǒng)計圖;

3)大量反復試驗下頻率穩(wěn)定值即概率,觀察可知頻率穩(wěn)定在33%左右,用之估計概率即可.

10.34;,故表格中空格依次是29%;34%36%;33%34%;

2)如圖:

3)觀察可知頻率穩(wěn)定在33%左右,故摸出一個黃球的概率是33%

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,DAE=EB=D.直線AD與BE平行嗎?直線AB與DC平行嗎?說明理由(請在下面的解答過程的空格內(nèi)填空或在括號內(nèi)填寫理由).

解:直線AD與BE平行,直線AB與DC

理由如下:

∵∠DAE=E,(已知)

,(內(nèi)錯角相等,兩條直線平行)

∴∠D=DCE. (兩條直線平行,內(nèi)錯角相等)

∵∠B=D,(已知)

∴∠B= ,(等量代換)

.(同位角相等,兩條直線平行)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校260名學生參加植樹活動,要求每人植樹4﹣7顆,活動結(jié)束后隨機抽查了20名學生每人的植樹數(shù)量,并分為四種類型,A:4顆;B:5顆;C:6顆;D:7顆.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認扇形圖是正確的,而條形圖尚有一處錯誤.

回答下列問題:

(1)寫出條形圖中存在的錯誤,并說明理由;

(2)寫出這20名學生每人植樹量的眾數(shù)和中位數(shù);

(3)求這20名學生每人植樹量的平均數(shù),并估計這260名學生共植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線 與直線 相交于點P(1,b)

(1)求b,m的值
(2)垂直于x軸的直線 與直線 , 分別相交于C,D,若線段CD長為2,求a的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小組在用頻率估計概率的試驗中,統(tǒng)計了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的試驗最有可能的是(  )

A. 石頭、剪刀、布的游戲中,小明隨機出的是剪刀

B. 擲一個質(zhì)地均勻的正方體骰子,落地時面朝上的點數(shù)是6

C. 一次擲兩枚質(zhì)地均勻的硬幣,出現(xiàn)兩枚硬幣都正面朝上

D. 2,3,4三個數(shù)字隨機排成一個三位數(shù),排出的數(shù)是偶數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB、AC的垂直平分線l1、l2相交于點O,若∠BAC等于82°,則∠OBC=°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某月的日歷表,在此目歷表上可以用一個字圈出5個數(shù).

(1)如圖中四周的4個數(shù)3、9、17、11的和與中間的數(shù)10有什么數(shù)量關(guān)系?

(2)照此方法,任意圈出的5個數(shù)是否都具有這樣的數(shù)量關(guān)系?請通過整式的運算說明理由.

(3)(2)的結(jié)論說明圈出的5個數(shù)的和能否等于125?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC 三邊的中線 AD,BE,CF 相交于點 G,若 SABC=15,則圖中陰影部分面積是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的頂點A的坐標為(0,﹣1),頂點Bx軸的負半軸上,頂點Cy軸的正半軸上,且∠ABC=90°,ACB=30°,線段OC的垂直平分線分別交OC,BC于點D,E.

(1)C的坐標;

(2)P為線段ED的延長線上的一點,連接PC,PA,設點P的橫坐標為t,ACP的面積為S,求St的函數(shù)關(guān)系式;

(3)(2)的條件下,點F為線段BC的延長線上一點,連接OF,若OF=CP,求∠OFP的度數(shù).

查看答案和解析>>

同步練習冊答案