【題目】如圖,在△ABC中,∠C=90°,∠ABC=45°,D是BC邊上的一點(diǎn),BD=2,將△ACD沿直線AD翻折,點(diǎn)C剛好落在AB邊上的點(diǎn)E處.若P是直線AD上的動(dòng)點(diǎn),則△PEB的周長的最小值是________.
【答案】
【解析】
連接CE,交AD于M,根據(jù)折疊和等腰三角形性質(zhì)得出當(dāng)P和D重合時(shí),PE+BP的值最小,此時(shí)△BPE的周長最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE長,代入求出即可.
如圖,
連接CE,交AD于M,
∵沿AD折疊C和E重合,
∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,
∴AD垂直平分CE,即C和E關(guān)于AD對(duì)稱,BD=2,
∴CD=DE=,
∴當(dāng)P和D重合時(shí),PE+BP的值最小,即此時(shí)△BPE的周長最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,
∵∠DEA=90°,
∴∠DEB=90°,
∵∠ABC=45°,
∴∠B=45°,
∵DE=,
∴BE=,
即BC=2+,
∴△PEB的周長的最小值是BC+BE=2++=2+2.
故答案為:2+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,P為BC延長線上一點(diǎn),∠PAC=∠B,AD為⊙O的直徑,過C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判斷直線PA與⊙O的位置關(guān)系,并說明理由;
(2)求證:AG2=AFAB;
(3)若⊙O的直徑為10,AC=2 ,AB=4 ,求△AFG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ABMN和正方形ACDE,CN、BE交于點(diǎn)P. 求證:∠ANC = ∠ABE.
應(yīng)用:Q是線段BC的中點(diǎn),連結(jié)PQ. 若BC = 6,則PQ = ___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在開展“美麗廣西,清潔鄉(xiāng)村”的活動(dòng)中某鄉(xiāng)鎮(zhèn)計(jì)劃購買A、B兩種樹苗共100棵,已知A種樹苗每棵30元,B種樹苗每棵90元.
(1)設(shè)購買A種樹苗x棵,購買A、B兩種樹苗的總費(fèi)用為y元,請(qǐng)你寫出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)如果購買A、B兩種樹苗的總費(fèi)用不超過7560元,且B種樹苗的棵數(shù)不少于A種樹苗棵數(shù)的3倍,那么有哪幾種購買樹苗的方案?
(3)從節(jié)約開支的角度考慮,你認(rèn)為采用哪種方案更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】湖州某企業(yè)新增了一個(gè)化工項(xiàng)目,為了節(jié)約資源,保護(hù)環(huán)境,該企業(yè)決定購買A、B兩種型號(hào)的污水處理設(shè)備共10臺(tái),具體情況如下表:
A型 | B型 | |
價(jià)格(萬元/臺(tái)) | 15 | 12 |
月污水處理能力(噸/月) | 250 | 200 |
經(jīng)預(yù)算,企業(yè)最多支出136萬元購買設(shè)備,且要求月處理污水能力不低于2150噸.
(1)該企業(yè)有哪幾種購買方案?
(2)哪種方案更省錢?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在開展“美麗廣西,清潔鄉(xiāng)村”的活動(dòng)中某鄉(xiāng)鎮(zhèn)計(jì)劃購買A、B兩種樹苗共100棵,已知A種樹苗每棵30元,B種樹苗每棵90元.
(1)設(shè)購買A種樹苗x棵,購買A、B兩種樹苗的總費(fèi)用為y元,請(qǐng)你寫出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)如果購買A、B兩種樹苗的總費(fèi)用不超過7560元,且B種樹苗的棵數(shù)不少于A種樹苗棵數(shù)的3倍,那么有哪幾種購買樹苗的方案?
(3)從節(jié)約開支的角度考慮,你認(rèn)為采用哪種方案更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)y= (k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x﹣3與x軸交于A、B兩點(diǎn),且B(1,0)
(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);
(2)如圖1,點(diǎn)P是直線y=x上的動(dòng)點(diǎn),當(dāng)直線y=x平分∠APB時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,已知直線y= x﹣ 分別與x軸、y軸交于C、F兩點(diǎn),點(diǎn)Q是直線CF下方的拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Q作y軸的平行線,交直線CF于點(diǎn)D,點(diǎn)E在線段CD的延長線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com