【題目】如圖,在菱形ABCD中,AB=2,∠ABC=60°,對角線AC、BD相交于點O,將對角線AC所在的直線繞點O順時針旋轉(zhuǎn)角α(0°<α<90°)后得直線l,直線l與AD、BC兩邊分別相交于點E和點F.

(1)求證:△AOE≌△COF;
(2)當(dāng)α=30°時,求線段EF的長度.

【答案】
(1)解:∵四邊形ABCD是菱形,

∴AD∥BC,AO=OC,

,

∴AE=CF,OE=OF,

在△AOE和△COF中,

∴△AOE≌△COF


(2)解:當(dāng)α=30°時,即∠AOE=30°,

∵四邊形ABCD是菱形,∠ABC=60°,

∴∠OAD=60°,

∴∠AEO=90°,

在Rt△AOB中,

sin∠ABO= = = ,

∴AO=1,

在Rt△AEO中,

cos∠AOE=cos30°= = ,

∴OE= ,

∴EF=2OE=


【解析】(1)首先證明AE=CF,OE=OF,結(jié)合AO=CO,利用SSS證明△AOE≌△COF;(2)首先畫出α=30°時的圖形,根據(jù)菱形的性質(zhì)得到EF⊥AD,解三角形即可求出OE的長,進(jìn)而得到EF的長.
【考點精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半,以及對旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各題
(1)計算: +cos60°×( 2
(2)計算: +

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線y= ,經(jīng)過點D(6,1),點C是雙曲線第三象限上的動點,過C作CA⊥x軸,過D作DB⊥y軸,垂足分別為A、B,連接AB,BC.

(1)求k的值;
(2)若△BCD的面積為12,求直線CD的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)如圖1,在△ABC中,AD是中線,分別過點B、C作AD及其延長線的垂線BE、CF,垂足分別為點E、F.求證:BE=CF.

(2)如圖2,在△ABC中,AB=2,AC=1,以AB為直徑的圓與AC相切,與邊BC交于點D,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)45°后得到正方形AB1C1D1 , 邊B1C1與CD交于點O,則四邊形AB1OD的面積是(

A.
B.
C.
D. ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BC=4,以點A為圓心,2為半徑的⊙A與BC相切于點D,交AB于點E,交AC于點F,點P是⊙A上的一點,且∠EPF=45°,則圖中陰影部分的面積為(

A.4﹣π
B.4﹣2π
C.8+π
D.8﹣2π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校課題研究小組對本校九年級全體同學(xué)體育測試情況進(jìn)行調(diào)查,他們隨即抽查部分同學(xué)體育測試成績(由高到低分A、B、C、D四個等級),根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.
請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:

(1)該課題研究小組共抽查了名同學(xué)的體育測試成績,扇形統(tǒng)計圖中B級所占的百分比b= , D級所在小扇形的圓心角的大小為
(2)請直接補(bǔ)全條形統(tǒng)計圖;
(3)若該校九年級共有600名同學(xué),請估計該校九年級同學(xué)體育測試達(dá)標(biāo)(測試成績C級以上,含C級)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如表記錄了一名球員在罰球線上投籃的結(jié)果.那么,這名球員投籃一次,投中的概率約為(精確到0.1).

投籃次數(shù)(n)

50

100

150

200

250

300

500

投中次數(shù)(m)

28

60

78

104

123

152

251

投中頻率(m/n)

0.56

0.60

0.52

0.52

0.49

0.51

0.50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰Rt△,如此繼續(xù)下去,直到所畫直角三角形的斜邊與△ABC的BC邊在同一直線上時為止,此時,這個直角三角形的斜邊長為(

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案