【題目】如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°后得到正方形AB1C1D1 , 邊B1C1與CD交于點(diǎn)O,則四邊形AB1OD的面積是( )
A.
B.
C.
D. ﹣1
【答案】D
【解析】方法一:
解:連接AC1 ,
∵四邊形AB1C1D1是正方形,
∴∠C1AB1= ×90°=45°=∠AC1B1 ,
∵邊長為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°后得到正方形AB1C1D1 ,
∴∠B1AB=45°,
∴∠DAB1=90°﹣45°=45°,
∴AC1過D點(diǎn),即A、D、C1三點(diǎn)共線,
∵正方形ABCD的邊長是1,
∴四邊形AB1C1D1的邊長是1,
在Rt△C1D1A中,由勾股定理得:AC1= = ,
則DC1= ﹣1,
∵∠AC1B1=45°,∠C1DO=90°,
∴∠C1OD=45°=∠DC1O,
∴DC1=OD= ﹣1,
∴S△ADO= ×ODAD= ,
∴四邊形AB1OD的面積是=2× = ﹣1,
方法二:
解:∵四邊形ABCD是正方形,
∴AC= ,∠OCB1=45°,
∴CB1=OB1
∵AB1=1,
∴CB1=OB1=AC﹣AB1= ﹣1,
∴S△OB1C= OB1CB1= ( ﹣1)2 ,
∵S△ADC= ADAC= ×1×1= ,
∴S四邊形AB1OD=S△ADC﹣S△OB1C= ﹣ ( ﹣1)2= ﹣1;
故選:D.
連接AC1 , AO,根據(jù)四邊形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三點(diǎn)共線,在Rt△C1D1A中,由勾股定理求出AC1 , 進(jìn)而求出DC1=OD,根據(jù)三角形的面積計(jì)算即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中,對角線AC、BD交于點(diǎn)O,且AC=2BD,以AD為斜邊在菱形ABCD同側(cè)作Rt△ADE.
(1)如圖1,當(dāng)點(diǎn)E落在邊AB上時(shí).
①求證:∠BDE=∠BAO;
②求 的值;
③當(dāng)AF=6時(shí),求DF的長.
(2)如圖2,當(dāng)點(diǎn)E落在菱形ABCD內(nèi)部,且AE=DE時(shí),猜想OE與OB的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過點(diǎn)B.若OA2﹣AB2=12,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,ABCD中,BC=8cm,CD=4cm,∠B=60°,點(diǎn)M從點(diǎn)D出發(fā),沿DA方向勻速運(yùn)動,速度為2cm/s,點(diǎn)N從點(diǎn)B出發(fā),沿BC方向勻速運(yùn)動,速度為1cm/s,過M作MF⊥CD,垂足為F,延長FM交BA的延長線于點(diǎn)E,連接EN,交AD于點(diǎn)O,設(shè)運(yùn)動時(shí)間為t(s)(0<t<4),解答下列問題:
(1)當(dāng)t為何值時(shí),△AEM≌△DFM?
(2)連接AN,MN,設(shè)四邊形ANME的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使四邊形ANME的面積是ABCD面積的 ?若存在,求出相應(yīng)的t值,若不存在,說明理由;
(4)連接AC,交EN于點(diǎn)P,當(dāng)EN⊥AD時(shí),求線段OP的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為豐富學(xué)生的校園生活,準(zhǔn)備從某體育用品商店一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購買1個(gè)足球和2個(gè)籃球共需210元.購買2個(gè)足球和6個(gè)籃球共需580元.
(1)購買一個(gè)足球、一個(gè)籃球各需多少元?
(2)根據(jù)學(xué)校的實(shí)際情況,需從該體育用品商店一次性購買足球和籃球共100個(gè).要求購買足球和籃球的總費(fèi)用不超過6000元,這所中學(xué)最多可以購買多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠ABC=60°,對角線AC、BD相交于點(diǎn)O,將對角線AC所在的直線繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)后得直線l,直線l與AD、BC兩邊分別相交于點(diǎn)E和點(diǎn)F.
(1)求證:△AOE≌△COF;
(2)當(dāng)α=30°時(shí),求線段EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為3,1.反比例函數(shù)y= 的圖象經(jīng)過A,B兩點(diǎn),則菱形ABCD的面積為( )
A.2
B.4
C.2
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰三角形ABC中,AB=AC,O為AB上一點(diǎn),以O(shè)為圓心,OB長為半徑的圓交BC于D,DE⊥AC交AC于E.
(1)求證:DE是⊙O的切線;
(2)若⊙O與AC相切于F,AB=AC=8cm,sinA= ,求⊙O的半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)營業(yè)額不斷增長,某大型超市決定購進(jìn)甲、乙兩種商品,已知甲種商品每件進(jìn)價(jià)為150元,售價(jià)為168元;乙種商品每件進(jìn)價(jià)為120元,售價(jià)為140元,該超市用42000元購進(jìn)甲、乙兩種商品,銷售完后共獲利5600元.
(1)該超市購進(jìn)甲、乙兩種商品各多少件?
(2)超市第二次以原價(jià)購進(jìn)甲、乙兩種商品共400件,且購進(jìn)甲種商品的件數(shù)多于乙種商品的件數(shù),要使第二次經(jīng)營活動的獲利不少于7580元,共有幾種進(jìn)貨方案?寫出利潤最大的進(jìn)貨方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com