【題目】將拋物線c1 沿x軸翻折,得到拋物線c2,如圖1所示.

(1)請直接寫出拋物線c2的表達(dá)式;

(2)現(xiàn)將拋物線c1向左平移m個單位長度,平移后得到新拋物線的頂點為M,與x軸的交點從左到右依次為A、B;將拋物線c2向右也平移m個單位長度,平移后得到新拋物線的頂點為N,與軸的交點從左到右依次為D、E

①當(dāng)B、D是線段AE的三等分點時,求m的值;

②在平移過程中,是否存在以點A、N、E、M為頂點的四邊形是矩形的情形?若存在,請求出此時m的值;若不存在,請說明理由.

【答案】(122,1/2是矩形,m1

【解析】試題分析:因為二次函數(shù)的圖像關(guān)于x軸對稱時,函數(shù)中的a,c,互為相反數(shù),b值不變,函數(shù)向左平移時,縱坐標(biāo)不變,橫坐標(biāo)均減少平移個單位,可假定成立,由直角三角形性質(zhì)得到驗證。解:(1)拋物線c2的表達(dá)式是; 2分;

2A的坐標(biāo)是(,0), 3分;

E的坐標(biāo)是(,0. 4分;

假設(shè)在平移過程中,存在以點A,M,E為頂點的三角形是直角三角形.

由題意得只能是.

過點MMG⊥x軸于點G.

由平移得:

M的坐標(biāo)是(, ), 5分;

G的坐標(biāo)是(,0),

,

,

Rt△AGM中,

tan,

, 6分;

tan

7分;

. 8.

所以在平移過程中,當(dāng)時,存在以點A,M,E為頂點的三角形是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點的弦分成的四條線段,,的長度恰好是四個互不相同的正整數(shù),則稱點整分點.現(xiàn)已知是半徑為上一點,則在半徑上有________個不同的整分點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A(﹣1,0),B(3,0),C(0,1)在拋物線y=ax2+bx+c上.

(1)求拋物線解析式;

(2)在直線BC上方的拋物線上求一點P,使PBC面積為1;

(3)在x軸下方且在拋物線對稱軸上,是否存在一點Q,使∠BQC=BAC?若存在,求出Q點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=﹣x+3x軸于點A,交y軸于點B,頂點為D的拋物線y=﹣x2+2mx﹣3m經(jīng)過點A,交x軸于另一點C,連接BD,AD,CD,如圖所示.

(1)直接寫出拋物線的解析式和點A,C,D的坐標(biāo);

(2)動點PBD上以每秒2個單位長的速度由點B向點D運動,同時動點QCA上以每秒3個單位長的速度由點C向點A運動,當(dāng)其中一個點到達(dá)終點停止運動時,另一個點也隨之停止運動,設(shè)運動時間為t秒.PQ交線段AD于點E.

①當(dāng)∠DPE=CAD時,求t的值;

②過點EEMBD,垂足為點M,過點PPNBD交線段ABAD于點N,當(dāng)PN=EM時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線l:y=x+mx軸于點A,二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,與直線l交于點D,已知CDx軸平行,且SACD:SABD=3:5.

(1)求點A的坐標(biāo);

(2)求此二次函數(shù)的解析式;

(3)點P為直線l上一動點,將線段AC繞點P順時針旋轉(zhuǎn)α°(0°<α°<360°)得到線段A'C'(點A,A'是對應(yīng)點,點C,C'是對應(yīng)點).請問:是否存在這樣的點P,使得旋轉(zhuǎn)后點A'和點C'分別落在直線l和拋物線y=ax2﹣3ax+c的圖象上?若存在,請直接寫出點A'的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程有實數(shù)根.

(1)m的值;

(2)先作的圖象關(guān)于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式;

(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點時,求的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,.

1)如圖1,若直線相交于,過點,連接并延長,使得,過點,證明:.

2)如圖2,若直線的延長線相交于,過點,連接并延長,使得,過點的延長線于,探究:、之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點C⊙O上一點,經(jīng)過CCD⊥AB于點D,CF⊙O的切線,過點AAE⊥CFE,連接AC.

(1)求證:AE=AD.

(2)AE=3,CD=4,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為美化校園,計劃對面積為的區(qū)域進(jìn)行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為區(qū)域的綠化時,甲隊比乙隊少用4天。

1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少?

2)若學(xué)校每天需付給甲隊的綠化費用為0.35萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?

查看答案和解析>>

同步練習(xí)冊答案