【題目】如圖,平面直角坐標(biāo)系中,直線l:y=x+m交x軸于點A,二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,與直線l交于點D,已知CD與x軸平行,且S△ACD:S△ABD=3:5.
(1)求點A的坐標(biāo);
(2)求此二次函數(shù)的解析式;
(3)點P為直線l上一動點,將線段AC繞點P順時針旋轉(zhuǎn)α°(0°<α°<360°)得到線段A'C'(點A,A'是對應(yīng)點,點C,C'是對應(yīng)點).請問:是否存在這樣的點P,使得旋轉(zhuǎn)后點A'和點C'分別落在直線l和拋物線y=ax2﹣3ax+c的圖象上?若存在,請直接寫出點A'的坐標(biāo);若不存在,請說明理由.
【答案】(1) A(﹣1,0);(2) y=﹣(x+1)(x﹣4)=﹣x2+x+2;(3)見解析.
【解析】
(1)由題意可得C(0,c),且CD∥x軸,可得D(3,c),根據(jù)面積比可得AB=5.由對稱性可得點A(-2m,0)到對稱軸的距離2倍是5,可求m,即可求A點坐標(biāo).
(2)由直線l過D點可求D(3,2),由A,B關(guān)于對稱軸對稱可求B(4,0),則可用交點式求二次函數(shù)的解析式.
(3)由點A是直線l上一點,繞直線l上點P旋轉(zhuǎn),且落在直線l上,因此可得點A與點A'重合,或點A繞點P旋轉(zhuǎn)180°得到A'.設(shè)C'(a,-a2+a+2)根據(jù)中點坐標(biāo)公式可求A'點坐標(biāo).
解:(1)
∵二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點
∴C(0,c,),對稱軸是直線x==.
∵CD∥x軸.
∴C,D關(guān)于對稱軸直線x=對稱.
∴D(3,c).
∵S△ACD:S△ABD=3:5.且△ACD和△ABD是等高的.
∴.
∴AB=5.
∵直線y=x+m與x軸交于A點,
∴A(﹣2m,0).
∵點A,點B關(guān)于對稱軸x=對稱.
∴2×[﹣(﹣2m)]=5.
∴m=.
∴A(﹣1,0),且AB=5.
∴B(4,0).
(2)設(shè)拋物線解析式y=a(x+1)(x﹣4).
∵m=.
∴直線AD解析式y=x+.
∵D(3,c)在直線AD上.
∴c=+=2.
∴D(3,2)且在拋物線上.
∴2=a(3+1)(3﹣4).
∴a=﹣.
∴拋物線解析式y=﹣(x+1)(x﹣4)=﹣x2+x+2.
(3)∵點A在直線l上,旋轉(zhuǎn)后A'點落在直線l上,
∴點A與點A'重合,或者點A繞著點P旋轉(zhuǎn)180°.
當(dāng)點A與點A'重合時,A'(﹣1,0).
當(dāng)點A繞著點P旋轉(zhuǎn)180°得到A',點C繞著點P旋轉(zhuǎn)180°得到C'
∴AP=A'P,CP=CP'.
如圖2:
設(shè)C'(a,﹣a2+a+2).
∵C( 0,2),CP=CP'.
∴P(a,﹣a2+a+2).
∵點P在直線l上,
∴﹣a2+a+2=a+.
即 a2﹣2a﹣6=0.
解得:a1=1+,a2=1﹣.
當(dāng)a1=1+時,y=×(1+)+=.
∴P(,).
∵AP=A'P.
∴A'(2+,).
當(dāng)a2=1﹣時,y=×(1﹣)+=.
∴P(,).
∵AP=AP'.
∴A'(2﹣,).
綜上所述A'(2﹣,),(2+,),(﹣1,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小剛和小紅打算各自隨機(jī)選擇本周日的上午或下午去揚州馬可波羅花世界游玩.
小明和小剛都在本周日上午去游玩的概率為________;
求他們?nèi)嗽谕粋半天去游玩的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果拋物線y=ax2+bx+c過定點M(1,0),則稱此拋物線為定點拋物線.
(1)張老師在投影屏幕上出示了一個題目:請你寫出一條定點拋物線的解析式.小敏寫出了一個正確的答案:y=2x2+3x-5.請你寫出一個不同于小敏的答案;
(2)張老師又在投影屏幕上出示了一個思考題:已知定點拋物線y=-x2+2bx+c,求該拋物線的頂點最低時的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).
(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;并寫出B點坐標(biāo);
(2)請作出△ABC關(guān)于y軸對稱的△A'B'C';
(3)請作出將△ABC向下平移的3個單位,再向右平移5個單位后的△A1B1C1;則點A1的坐標(biāo)為_____;點B1的坐標(biāo)為______,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)和的圖象關(guān)于原點成中心對稱,我們就稱其中一個函數(shù)是另一個函數(shù)的中心對稱函數(shù),也稱函數(shù)和互為中心對稱函數(shù).
求函數(shù)的中心對稱函數(shù);
如圖,在平面直角坐標(biāo)系xOy中,E,F(xiàn)兩點的坐標(biāo)分別為,,二次函數(shù)的圖象經(jīng)過點E和原點O,頂點為已知函數(shù)和互為中心對稱函數(shù);
請在圖中作出二次函數(shù)的頂點作圖工具不限,并畫出函數(shù)的大致圖象;
當(dāng)四邊形EPFQ是矩形時,請求出a的值;
已知二次函數(shù)和互為中心對稱函數(shù),且的圖象經(jīng)過的頂點當(dāng)時,求代數(shù)式的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線c1: 沿x軸翻折,得到拋物線c2,如圖1所示.
(1)請直接寫出拋物線c2的表達(dá)式;
(2)現(xiàn)將拋物線c1向左平移m個單位長度,平移后得到新拋物線的頂點為M,與x軸的交點從左到右依次為A、B;將拋物線c2向右也平移m個單位長度,平移后得到新拋物線的頂點為N,與軸的交點從左到右依次為D、E.
①當(dāng)B、D是線段AE的三等分點時,求m的值;
②在平移過程中,是否存在以點A、N、E、M為頂點的四邊形是矩形的情形?若存在,請求出此時m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與軸交于、兩點,與軸交于點,點的坐標(biāo)為,且當(dāng)和時二次函數(shù)的函數(shù)值相等.
()求實數(shù)、的值.
()如圖,動點、同時從點出發(fā),其中點以每秒個單位長度的速度沿邊向終點運動,點以每秒個單位長度的速度沿射線方向運動,當(dāng)點停止運動時,點隨之停止運動.設(shè)運動時間為秒.連接,將沿翻折,使點落在點處,得到.
①是否存在某一時刻,使得為直角三角形?若存在,求出的值;若不存在,請說明理由.
②設(shè)與重疊部分的面積為,求關(guān)于的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個四邊形,則下列結(jié)論中不一定成立的是( )
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點在拋物線上.
若,,求的值;
若此拋物線經(jīng)過點,且二次函數(shù)的最小值是,請畫出點的縱坐標(biāo)隨橫坐標(biāo)變化的圖象,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com