【題目】如圖,點(diǎn)A(m,m+1),B(m+3,m1)都在反比例函數(shù)的圖象上,如果Mx軸上一點(diǎn),Ny軸上一點(diǎn),以點(diǎn)A,BM,N為頂點(diǎn)的四邊形是平行四邊形,直接寫出點(diǎn)M,N的坐標(biāo):____________.

【答案】

【解析】

根據(jù)反比例函數(shù)解析式求得k=xy;然后利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征列出關(guān)于m的方程k=mm+1=m+3)(m-1),從而求得km的值,得出A,B的坐標(biāo),在分情況討論,這樣的平行四邊形有2個(gè):點(diǎn)M分別位于x軸的正負(fù)半軸上、點(diǎn)N分別位于y軸的正負(fù)半軸上.

∵點(diǎn)A(m,m+1),B(m+3,m1)都在反比例函數(shù)y=kx的圖象上,

,

k=m(m+1)=(m+3)(m1)

m2+m=m2+2m3,

解得m=3

k=3×4=12;

m=3,

A(3,4),B(6,2),

AMx軸于M,過BBNy軸于N,兩線交于P,

A(3,4),B(6,2),

AP=PM=2,BP=PN=3,

∵四邊形ANMB是平行四邊形,

當(dāng)M(3,0)、N(0,2)時(shí),根據(jù)勾股定理能求出AM=BNAB=MN,

即四邊形AMNB是平行四邊形,

∴此時(shí)M(3,0)、N(0,2)M(3,0)、N(0,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=110°,則α等于(  )

A. 20° B. 30° C. 40° D. 50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB邊向點(diǎn)B1cm/s的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C2cm/s的速度移動(dòng),如果P,Q兩點(diǎn)同時(shí)出發(fā),分別到達(dá)B,C兩點(diǎn)后就停止移動(dòng).

(1)設(shè)運(yùn)動(dòng)開始后第t秒鐘后,五邊形APQCD的面積為Scm2,寫出St 的函數(shù)關(guān)系式,并指出自變量t的取值范圍.

(2)t為何值時(shí),S最小?最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac0;②當(dāng)x﹣1時(shí),yx增大而減;③a+b+c0④若方程ax2+bx+c﹣m=0沒有實(shí)數(shù)根,則m2; 3a+c0.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A-4,2)、Bn,-4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)圖象的兩個(gè)交點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的解析式.

2)求的面積.

3)觀察圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊BC上的一點(diǎn),∠DAE的平分線AFBC的延長線于點(diǎn)F,交CD于點(diǎn)G,若AB=8,BF=16,求CE的長;.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0,y0)到直線Ax+By+C=0的距離公式為:

例如:求點(diǎn)P0(0,0)到直線4x+3y﹣3=0的距離.

解:由直線4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴點(diǎn)P0(0,0)到直線4x+3y﹣3=0的距離為=

根據(jù)以上材料,解決下列問題:

問題1:點(diǎn)P1(3,4)到直線的距離為 ;

問題2:已知:⊙C是以點(diǎn)C(2,1)為圓心,1為半徑的圓,⊙C與直線相切,求實(shí)數(shù)b的值;

問題3:如圖,設(shè)點(diǎn)P為問題2中⊙C上的任意一點(diǎn),點(diǎn)A,B為直線3x+4y+5=0上的兩點(diǎn),且AB=2,請求出SABP的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動(dòng),直到點(diǎn)O為止;動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),與點(diǎn)P同時(shí)結(jié)束運(yùn)動(dòng).

1)當(dāng)運(yùn)動(dòng)時(shí)間為2s時(shí),P、Q兩點(diǎn)的距離為   cm;

2)請你計(jì)算出發(fā)多久時(shí),點(diǎn)P和點(diǎn)Q之間的距離是10cm;

3)如圖2,以點(diǎn)O為坐標(biāo)原點(diǎn),OC所在直線為x軸,OA所在直線為y軸,1cm長為單位長度建立平面直角坐標(biāo)系,連結(jié)AC,與PQ相交于點(diǎn)D,若雙曲線過點(diǎn)D,問k的值是否會變化?若會變化,說明理由;若不會變化,請求出k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,CACB,點(diǎn)OABC的內(nèi)部,⊙O經(jīng)過BC兩點(diǎn),交AB于點(diǎn)D,連接CO并延長交AB于點(diǎn)G,以GDGC為鄰邊作GDEC

1)判斷DE與⊙O的位置關(guān)系,并說明理由.

2)若點(diǎn)B的中點(diǎn),⊙O的半徑為2,求的長.

查看答案和解析>>

同步練習(xí)冊答案