精英家教網 > 初中數學 > 題目詳情

【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17.

(1)請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?

(2)目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節(jié)省費用?

【答案】(1)1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸;(2)貨運公司應安排大貨車8輛時,小貨車2輛時最節(jié)省費用.

【解析】

1)設1輛大貨車和1輛小貨車一次可以分別運貨噸和噸,根據“3輛大貨車與4輛小貨車一次可以運貨18噸、2輛大貨車與6輛小貨車一次可以運貨17噸”列方程組求解可得;

2)因運輸33噸且用10輛車一次運完,故10輛車所運貨不低于10噸,所以列不等式,大貨車運費高于小貨車,故用大貨車少費用就小進行安排即可.

1)解:設1輛大貨車一次可以運貨x噸,1輛小貨車一次可以運貨y噸,依題可得:
,
解得: .
答:1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨.
2)解:設大貨車有m輛,則小貨車10-m輛,依題可得:
4m+10-m)≥33
m≥0
10-m≥0
解得:≤m≤10,
m=8,9,10;
∴當大貨車8輛時,則小貨車2輛;
當大貨車9輛時,則小貨車1輛;
當大貨車10輛時,則小貨車0輛;
設運費為W=130m+100(10-m=30m+1000,
k=300
Wx的增大而增大,
∴當m=8時,運費最少,
∴W=130×8+100×2=1240(元),
答:貨運公司應安排大貨車8輛時,小貨車2輛時最節(jié)省費用.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】小明在數學活動課上,將邊長為3的兩個正方形放置在直線l上,如圖a,他連接AD、CF,經測量發(fā)現AD=CF

1)他將正方形ODEFO點逆時針針旋轉一定的角度,如圖b,試判斷ADCF還相等嗎?說明理由.

2)他將正方形ODEFO點逆時針旋轉,使點E旋轉至直線l上,如圖c,請求出CF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市公交公司為應對春運期間的人流高峰,計劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,

(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?

(2)若該公司預計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知 AD BC 相交于 E 1 2 3, BD CD, ADB 90, CH ABH , CH AD F

1)求證: CD AB ;

2)求證: BDE ACE ;

3)若O AB 中點,求證:OF= BE 。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:在平面直角坐標系中,直線lx軸交于點A1,如圖所示依次作正方形A1B1C1O、

正方形A2B2C2C1、…、正方形,使得點A1、A2A3、…在直線l上,點C1、C2、C3、…

y軸正半軸上,則點的坐標是_______________________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】人民商場準備購進甲、乙兩種牛奶進行銷售,若甲種牛奶的進價比乙種牛奶的進價每件少5元,其用90元購進甲種牛奶的數量與用100元購進乙種牛奶的數量相同.

1)求甲種牛奶、乙種牛奶的進價分別是多少元?

2)若該商場購進甲種牛奶的數量是乙種牛奶的3倍少5件,該商場甲種牛奶的銷售價格為49元,乙種牛奶的銷售價格為每件55元,則購進的甲、乙兩種牛奶全部售出后,可使銷售的總利潤(利潤=售價﹣進價)等于371元,請通過計算求出該商場購進甲、乙兩種牛奶各自多少件?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某研究性學習小組進行了探究活動.如圖,已知一架竹梯AB斜靠在墻角MON處,竹梯AB=13m,梯子底端離墻角的距離BO=5m.

(1)求這個梯子頂端A距地面有多高;

(2)如果梯子的頂端A下滑4 m到點C,那么梯子的底部B在水平方向上滑動的距離BD=4 m嗎?為什么?

(3)亮亮在活動中發(fā)現無論梯子怎么滑動,在滑動的過程中梯子上總有一個定點到墻角O的距離始終是不變的定值,會思考問題的你能說出這個點并說明其中的道理嗎?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2013年四川廣安8分)某商場籌集資金12.8萬元,一次性購進空調、彩電共30臺.根據市場需要,這些空調、彩電可以全部銷售,全部銷售后利潤不少于1.5萬元,其中空調、彩電的進價和售價見表格.

空調

彩電

進價(元/臺)

5400

3500

售價(元/臺)

6100

3900

設商場計劃購進空調x臺,空調和彩電全部銷售后商場獲得的利潤為y元.

(1)試寫出y與x的函數關系式;

(2)商場有哪幾種進貨方案可供選擇?

(3)選擇哪種進貨方案,商場獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法正確的是

A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨

B. “拋一枚硬幣正面朝上的概率為表示每拋2次就有一次正面朝上

C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎

D. “拋一枚正方體骰子,朝上的點數為2的概率為表示隨著拋擲次數的增加,拋出朝上的點數為2”這一事件發(fā)生的頻率穩(wěn)定在附近

查看答案和解析>>

同步練習冊答案