【題目】如圖,直線y=x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線段AB、OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),當(dāng)PC+PD的值最小時(shí),點(diǎn)P的坐標(biāo)為( 。
A.(﹣1,0)B.(﹣2,0)C.(﹣3,0)D.(﹣4,0)
【答案】B
【解析】
根據(jù)一次函數(shù)解析式求出點(diǎn)A、B的坐標(biāo),再由中點(diǎn)坐標(biāo)公式求出點(diǎn)C、D的坐標(biāo),根據(jù)對(duì)稱的性質(zhì)找出點(diǎn)D′的坐標(biāo),結(jié)合點(diǎn)C、D′的坐標(biāo)求出直線CD′的解析式,令y=0即可求出x的值,從而得出點(diǎn)P的坐標(biāo).
作點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn)D′,連接CD′交x軸于點(diǎn)P,此時(shí)PC+PD值最小,如圖.
令y=x+4中x=0,則y=4,
∴點(diǎn)B的坐標(biāo)為(0,4);
令y=x+4中y=0,則x+4=0,解得:x=﹣8,
∴點(diǎn)A的坐標(biāo)為(﹣8,0).
∵點(diǎn)C、D分別為線段AB、OB的中點(diǎn),
∴點(diǎn)C(﹣4,2),點(diǎn)D(0,2).
∵點(diǎn)D′和點(diǎn)D關(guān)于x軸對(duì)稱,
∴點(diǎn)D′的坐標(biāo)為(0,﹣2).
設(shè)直線CD′的解析式為y=kx+b,
∵直線CD′過(guò)點(diǎn)C(﹣4,2),D′(0,﹣2),
∴,解得:,
∴直線CD′的解析式為y=﹣x﹣2.
令y=0,則0=﹣x﹣2,解得:x=﹣2,
∴點(diǎn)P的坐標(biāo)為(﹣2,0).
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+2與x軸交于A,B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)C關(guān)于拋物線對(duì)稱軸對(duì)稱的點(diǎn)為D.
(1)求點(diǎn)D的坐標(biāo)及直線AD的解析式;
(2)如圖1,連接CD、AD、BD,點(diǎn)M為線段CD上一動(dòng)點(diǎn),過(guò)M作MN∥BD交線段AD于N點(diǎn),點(diǎn)P是y軸上的動(dòng)點(diǎn),當(dāng)△CMN的面積最大時(shí),求△MPN的周長(zhǎng)取得最小值時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,線段AE在第一象限內(nèi)交BD于點(diǎn)E,其中tan∠EAB=,將拋物線向右水平移動(dòng),點(diǎn)A平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)G;將△ABD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后的三角形紀(jì)為△A1BD1,若射線BD1與線段AE的交點(diǎn)為F,連接FG.若線段FG把△ABF分成△AFG和△BFG兩個(gè)三角形,是否存在點(diǎn)G,使得△AFG是直角三角形且△BFG是等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,cosB=,點(diǎn)M是AB邊的中點(diǎn),將△ABC繞著點(diǎn)M旋轉(zhuǎn),使點(diǎn)C與點(diǎn)A重合,點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)E重合,得到△DEA,且AE交CB于點(diǎn)P,那么線段CP的長(zhǎng)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點(diǎn),,過(guò)點(diǎn)作直線與軸互相垂直,為軸上的一個(gè)動(dòng)點(diǎn),且.
(1)如圖1,若點(diǎn)是第二象限內(nèi)的一個(gè)點(diǎn),且時(shí),求點(diǎn)的坐標(biāo);(用的代數(shù)式表示)
(2)如圖2,若點(diǎn)是第三象限內(nèi)的一個(gè)點(diǎn),設(shè)點(diǎn)的坐標(biāo),求的取值范圍:
(3)如圖3,連接,作的平分線,點(diǎn)、分別是射線與邊上的兩個(gè)動(dòng)點(diǎn),連接、,當(dāng)時(shí),試求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘漁船正以60海里/小時(shí)的速度向正東方向航行,在A處測(cè)得島礁P在東北方向上,繼續(xù)航行1.5小時(shí)后到達(dá)B處此時(shí)測(cè)得島礁P在北偏東30°方向,同時(shí)測(cè)得島礁P正東方向上的避風(fēng)港M在北偏東60°方向。為了在臺(tái)風(fēng)到來(lái)之前用最短時(shí)間到達(dá)M處,漁船立刻加速以75海里/小時(shí)的速度繼續(xù)航行多少小時(shí)即可到達(dá)? (結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問(wèn)題.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,適與岸齊問(wèn)水深、葭長(zhǎng)各幾何譯文大意是:如圖,有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.問(wèn)水的深度與這根蘆葦?shù)拈L(zhǎng)度分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,以□ABCD的較短邊CD為一邊作菱形CDEF,使點(diǎn)F落在邊AD上,連接BE,交AF于點(diǎn)G.
(1)猜想BG與EG的數(shù)量關(guān)系.并說(shuō)明理由;
(2)延長(zhǎng)DE,BA交于點(diǎn)H,其他條件不變,
①如圖2,若∠ADC=60°,求的值;
②如圖3,若∠ADC=α(0°<α<90°),直接寫(xiě)出的值.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點(diǎn)M為邊BC上一動(dòng)點(diǎn),聯(lián)結(jié)AM并延長(zhǎng)交射線DC于點(diǎn)F,作∠FAE=45°交射線BC于點(diǎn)E、交邊DCN于點(diǎn)N,聯(lián)結(jié)EF.
(1)當(dāng)CM:CB=1:4時(shí),求CF的長(zhǎng).
(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出定義域.
(3)當(dāng)△ABM∽△EFN時(shí),求CM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店一周內(nèi)甲、乙兩種計(jì)算器每天的銷售量如下(單位:個(gè)):
類別/星期 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 平均數(shù) |
甲 | ||||||||
乙 |
(1)將表格填寫(xiě)完整.
(2)求甲種計(jì)算器本周銷售量的方差.
(3)已知乙種計(jì)算器本周銷售量的方差為,本周哪種計(jì)算器的銷售量比較穩(wěn)定?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com