【題目】在平面直角坐標系中,O是坐標原點,ABCD的頂點A的坐標為(﹣2,0),點D的坐標為(0,2),點B在x軸的正半軸上,點E為線段AD的中點.
(Ⅰ)如圖1,求∠DAO的大小及線段DE的長;
(Ⅱ)過點E的直線l與x軸交于點F,與射線DC交于點G.連接OE,△OEF′是△OEF關于直線OE對稱的圖形,記直線EF′與射線DC的交點為H,△EHC的面積為3 .
①如圖2,當點G在點H的左側時,求GH,DG的長;
②當點G在點H的右側時,求點F的坐標(直接寫出結果即可).
【答案】(Ⅰ)∠DAO=60°,DE=2; (Ⅱ)①GH=6,DG=﹣3+;②F(﹣5﹣,0).
【解析】解:(Ⅰ)∵A(﹣2,0),D(0,2)∴AO=2,DO=2,∴tan∠DAO==,
∴∠DAO=60°,∴∠ADO=30°,∴AD=2AO=4,∵點E為線段AD中點,∴DE=2;
(Ⅱ)①如圖2,
過點E作EM⊥CD,∴CD∥AB,∴∠EDM=∠DAB=60°,∴EM=DEsin60°=,∴GH=6,
∵CD∥AB,∴∠DGE=∠OFE,
∵△OEF′是△OEF關于直線OE的對稱圖形,∴△OEF′≌△OEF,∴∠OFE=∠OF′E,
∵點E是AD的中點,∴OE=AD=AE,
∵∠EAO=60°,∴△EAO是等邊三角形,∴∠EOA=60°,∠AEO=60°,
∵△OEF′≌△OEF,∴∠EOF′=∠EOA=60°,
∴∠EOF′=∠AEO,∴AD∥OF′,∴∠OF′E=∠DEH,∴∠DEH=∠DGE,
∵∠DEH=∠EDG,∴△DHE∽△DEG,∴,∴DE2=DG×DH,
設DG=x,則DH=x+6,∴4=x(x+6),∴x1=﹣3+,x2=﹣3﹣,∴DG=﹣3+.
②如圖3,
過點E作EM⊥CD,∴CD∥AB,∴∠EDM=∠DAB=60°,∴EM=DEsin60°=,∴GH=6,
∵CD∥AB,∴∠DHE=∠OFE,
∵△OEF′是△OEF關于直線OE的對稱圖形,∴△OEF′≌△OEF,∴∠OFE=∠OF′E,
∵點E是AD的中點,∴OE=AD=AE,
∵∠EAO=60°,∴△EAO是等邊三角形,∴∠EOA=60°,∠AEO=60°,
∵△OEF′≌△OEF,∴∠EOF′=∠EOA=60°,∴∠EOF′=∠AEO,∴AD∥OF′,
∴∠OF′E=∠DEH,∴∠DEG=∠DHE,
∵∠DEG=∠EDH,∴△DGE∽△DEH,∴,∴DE2=DG×DH,
設DH=x,則DG=x+6,∴4=x(x+6),∴x1=﹣3+,x2=﹣3﹣,
∴DH=﹣3+.∴DG=3+∴DG=AF=3+,∴OF=5+,∴F(﹣5﹣,0).
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分) 求一個正數(shù)的算術平方根,有些數(shù)可以直接求得,如,有些數(shù)則不能直接求得,如,但可以通過計算器求. 還有一種方法可以通過一組數(shù)的內(nèi)在聯(lián)系,運用規(guī)律求得,請同學們觀察下表:
n | 16 | 0.16 | 0.0016 | 1600 | 160000 | … |
4 | 0.4 | 0.04 | 40 | 400 | … |
(1)表中所給的信息中,你能發(fā)現(xiàn)什么規(guī)律?(請將規(guī)律用文字表達出來)
(2)運用你發(fā)現(xiàn)的規(guī)律,探究下列問題:已知1.435,求下列各數(shù)的算術平方根:
①0.0206 ; ②20600 ;
(3)根據(jù)上述探究過程類比研究一個數(shù)的立方根已知1.260,則
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國計劃在2020年左右發(fā)射火星探測衛(wèi)星,據(jù)科學研究,火星距離地球的最近距離約為55000000千米.用科學記數(shù)法表示數(shù)據(jù)55000000為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中假命題是( )
A.正六邊形的外角和等于360°
B.位似圖形必定相似
C.樣本方差越大,數(shù)據(jù)波動越小
D.方程x2+x+1=0無實數(shù)根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,求作,使,根據(jù)下圖填空:
作法:()作射線__________;
()以點____為圓心,以任意長為半徑畫弧,交于點_____,交______于點_____;
()以點_____為圓心,以______長為半徑畫弧,交于點_______;
()以點______為圓心,以______長為半徑畫弧,交前面的弧于點;
()過點_______作射線_______,則________就是所求作的角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某玩具廠生產(chǎn)一種玩具,本著控制固定成本,降價促銷的原則,使生產(chǎn)的玩具能夠全部售出.據(jù)市場調(diào)查,若按每個玩具280元銷售時,每月可銷售300個.若銷售單價每降低1元,每月可多售出2個.據(jù)統(tǒng)計,每個玩具的固定成本Q(元)與月產(chǎn)銷量y(個)滿足如下關系:
月產(chǎn)銷量y(個) | … | 160 | 200 | 240 | 300 | … |
每個玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)寫出月產(chǎn)銷量y(個)與銷售單價x (元)之間的函數(shù)關系式;
(2)求每個玩具的固定成本Q(元)與月產(chǎn)銷量y(個)之間的函數(shù)關系式;
(3)若每個玩具的固定成本為30元,則它占銷售單價的幾分之幾?
(4)若該廠這種玩具的月產(chǎn)銷量不超過400個,則每個玩具的固定成本至少為多少元?銷售單價最低為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)值0.0000105用科學記數(shù)法表示為( )
A.1.05×104
B.0.105×10﹣4
C.1.05×10﹣5
D.1.05×10﹣7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com