【題目】已知:如圖,在正方形ABCD中,AB=4,點(diǎn)G是射線AB上的一個動點(diǎn),以DG為邊向右作正方形DGEF,作EH⊥AB于點(diǎn)H.
(1)若點(diǎn)G在點(diǎn)B的右邊.試探索:EHBG的值是否為定值,若是,請求出定值;若不是,請說明理由.
(2)連接EB,在G點(diǎn)的整個運(yùn)動(點(diǎn)G與點(diǎn)A重合除外)過程中,求∠EBH的度數(shù).
【答案】(1)EHBG的值是定值4,(2)在G點(diǎn)的整個運(yùn)動(點(diǎn)G與點(diǎn)A重合除外)過程中,∠EBH都等于45°
【解析】分析:根據(jù)垂直的定義得到∠GHE=90°,根據(jù)余角的性質(zhì)得到 根據(jù)正方形的性質(zhì)得到 判斷出證明≌,根據(jù)全等三角形的性質(zhì)得到,根據(jù)線段的和差即可得到結(jié)論;
(2)分三種情況討論:利用(1)得出≌,再判斷出△BHE是等腰直角三角形,即可得出結(jié)論.
詳解:(1)的值是定值,
又 ,∴
∵四邊形ABCD與四邊形DGEF都是正方形,
∴,∴
在和中,,
∴≌(AAS);
∴
又AG=AB+BG,AB=4,
∴EH=AB+BG,
∴EHBG=AB=4;
(2)(I)當(dāng)點(diǎn)G在點(diǎn)B的左側(cè)時,如圖1,
同(2)①可證得:△DAG≌△GHE,
∴GH=DA=AB,EH=AG,
∴GB+BH=AG+GB,
∴BH=AG=EH,又,
∴△BHE是等腰直角三角形,
∴
(II)如圖2,當(dāng)點(diǎn)G在點(diǎn)B的右側(cè)時,
由(2)①證得:△DAG≌△GHE.
∴GH=DA=AB,EH=AG,
∴AB+BG=BG+GH,
∴AG=BH,又EH=AG
∴EH=HB,又,
∴△BHE是等腰直角三角形,
∴
(III)當(dāng)點(diǎn)G與點(diǎn)B重合時,
如圖3,同理可證:△DAG≌△GHE,
∴GH=DA=AB,EH=AG=AB,
∴△GHE(即△BHE)是等腰直角三角形,
∴
綜上,在G點(diǎn)的整個運(yùn)動(點(diǎn)G與點(diǎn)A重合除外)過程中,∠EBH都等于
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某報社為了了解市民“獲取新聞的最主要途徑”,開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下三種不完整的統(tǒng)計圖表.
請根據(jù)圖表信息解答下列問題:
(1)統(tǒng)計表中的= ,= ,并請補(bǔ)全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中“”所對應(yīng)的圓心角的度數(shù)是 ;
(3)若該市約有100萬人,請你估計其中將“電腦上網(wǎng)”和“手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,下列條件不能判定這個四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿DE折疊,使點(diǎn)A落在BC邊上的點(diǎn)F處,且DE∥BC,下列結(jié)論中,一定正確的個數(shù)是( )
①△BDF是等腰三角形;
②DE=BC;
③四邊形ADFE是菱形;
④∠BDF+∠FEC=2∠A.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車都從A地出發(fā),在路程為360千米的同一道路上駛向B地.甲車先出發(fā)勻速駛向B地.10分鐘后乙車出發(fā),乙車勻速行駛3小時后在途中的配貨站裝貨耗時20分鐘.由于滿載貨物,乙車速度較之前減少了40千米/時.乙車在整個途中共耗時小時,結(jié)果與甲車同時到達(dá)B地.
(1)甲車的速度為 千米/時;
(2)求乙車裝貨后行駛的速度;
(3)乙車出發(fā) 小時與甲車相距10千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠B=60°.G是CD的中點(diǎn),E是邊AD上的動點(diǎn),EG的延長線與BC的延長線交于點(diǎn)F,連結(jié)CE,DF,下列說法不正確的是( )
A. 四邊形CEDF是平行四邊形
B. 當(dāng)時,四邊形CEDF是矩形
C. 當(dāng)時,四邊形CEDF是菱形
D. 當(dāng)時,四邊形CEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù) y=2x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方,所得的折線是函數(shù)y=(b為常數(shù))的圖象,若該圖象在直線y=1下方的點(diǎn)的橫坐標(biāo)x滿足0<x<3,則 b的取值范圍為( )
A.-5≤b≤-1B.-3≤b≤-1C.-2≤b≤0D.-3≤b≤0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=13,AC=5,BC邊上的中線AD=6,點(diǎn)E在AD的延長線上,且ED=AD.
(1)求證:BE∥AC;
(2)求∠CAD的大。
(3)求點(diǎn)A到BC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com