【題目】如圖,將△ABC沿DE折疊,使點(diǎn)A落在BC邊上的點(diǎn)F處,且DE∥BC,下列結(jié)論中,一定正確的個(gè)數(shù)是( )
①△BDF是等腰三角形;
②DE=BC;
③四邊形ADFE是菱形;
④∠BDF+∠FEC=2∠A.
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】分析:根據(jù)菱形的判定和等腰三角形的判定,采用排除法,逐條分析判斷.
詳解:∵三角形紙片ABC沿DE折疊,使點(diǎn)A落在BC邊上的點(diǎn)F處,且DE∥BC,
∴AD=DF,AE=EF,∠ADE=∠B,∠ADE=∠EDF,∠EDF=∠DFB,
∴∠B=BFD,
∴△BDF是等腰三角形,故本選項(xiàng)①正確;
∴BD=DF,
∴AD=BD,同理可得出:AE=CE,
∴DE是△ABC的中位線,
∴;故本選項(xiàng)②正確;
∵AB不一定等于AC,
∴AD不一定等于EF,四邊形ADFE不是平行四邊形;
∴故本選項(xiàng)③錯(cuò)誤;
∵△BDF是等腰三角形,∠B=∠BFD=∠ADE,
∴∠C=∠CFE=∠AED,
∴
∴
∴∠BDF+∠FEC=2∠A.
故本選項(xiàng)④正確.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“2018東臺(tái)西溪半程馬拉松”的賽事共有兩項(xiàng):A、“半程馬拉松”、 B、“歡樂(lè)跑”。小明參加了該項(xiàng)賽事的志愿者服務(wù)工作, 組委會(huì)隨機(jī)將志愿者分配到兩個(gè)項(xiàng)目組.
(1)小明被分配到“半程馬拉松”項(xiàng)目組的概率為________.
(2)為估算本次賽事參加“半程馬拉松”的人數(shù),小明對(duì)部分參賽選手作如下調(diào)查:
調(diào)查總?cè)藬?shù) | 20 | 50 | 100 | 200 | 500 |
參加“半程馬拉松”人數(shù) | 15 | 33 | 72 | 139 | 356 |
參加“半程馬拉松”頻率 | 0.750 | 0.660 | 0.720 | 0.695 | 0.712 |
①請(qǐng)估算本次賽事參加“半程馬拉松”人數(shù)的概率為_______.(精確到0.1)
②若本次參賽選手大約有3000人,請(qǐng)你估計(jì)參加“半程馬拉松”的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中, , AC=BC=3, 將△ABC折疊,使點(diǎn)A落在BC 邊上的點(diǎn)D處,EF為折痕,若AE=2,則的值為_____________.
【答案】
【解析】分析:過(guò)點(diǎn)D作DGAB于點(diǎn)G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1,
在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數(shù)求得, ;
設(shè)AF=DF=x,則FG= ,在Rt△DFG中,根據(jù)勾股定理得方程=,解得,從而求得.的值
詳解:
如圖所示,過(guò)點(diǎn)D作DGAB于點(diǎn)G.
根據(jù)折疊性質(zhì),可知△AEF△DEF,
∴AE=DE=2,AF=DF,CE=AC-AE=1,
在Rt△DCE中,由勾股定理得,
∴DB=;
在Rt△ABC中,由勾股定理得;
在Rt△DGB中, , ;
設(shè)AF=DF=x,得FG=AB-AF-GB=,
在Rt△DFG中, ,
即=,
解得,
∴==.
故答案為: .
點(diǎn)睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關(guān)鍵是靈活運(yùn)用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識(shí)來(lái)解決問(wèn)題.
【題型】填空題
【結(jié)束】
18
【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2,則下列說(shuō)法正確的是__________(寫出所有正確說(shuō)法).
①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;
②當(dāng)x=-2.1時(shí),[x]+(x)+[x)=-7;
③方程4[x]+3(x)+[x)=11的解為1<x<1.5;
④當(dāng)-1<x<1時(shí), 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個(gè)交點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市霧霾天氣趨于嚴(yán)重,甲商場(chǎng)根據(jù)民眾健康需要,代理銷售每臺(tái)進(jìn)價(jià)分別為600元、560
元的 A、B 兩種型號(hào)的空氣凈化器,如表是近兩周的銷售情況:(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷
售收入進(jìn)貨成本)
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 (元) | |
A種型號(hào) (臺(tái)) | B種型號(hào) (臺(tái)) | ||
第一周 | 3 | 2 | 3960 |
第二周 | 5 | 4 | 7120 |
(1)求 A,B 兩種型號(hào)的空氣凈化器的銷售單價(jià);
(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的空氣凈化器共30臺(tái),其中B型凈化器的進(jìn)貨量不超過(guò)A型的2倍.設(shè)購(gòu)進(jìn)A型空氣凈化器為x臺(tái),這30臺(tái)空氣凈化器的銷售總利潤(rùn)為y元.
①請(qǐng)寫出y關(guān)于x的函數(shù)關(guān)系式;
②該商店購(gòu)進(jìn)A型、B型凈化器各多少臺(tái),才能使銷售總利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(1,0),直線與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,-4),B點(diǎn)在y軸上.
(1)求m的值及這個(gè)二次函數(shù)的解析式;
(2)在x軸上找一點(diǎn)Q,使△QAB的周長(zhǎng)最小,并求出此時(shí)Q點(diǎn)坐標(biāo);
(3)若P(t,0)是x軸上的一個(gè)動(dòng)點(diǎn),過(guò)P作x軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點(diǎn).
①設(shè)線段DE的長(zhǎng)為h,當(dāng)0<t<3時(shí),求h與t之間的函數(shù)關(guān)系式;
②若直線AB與拋物線的對(duì)稱軸交點(diǎn)為N,問(wèn)是否存在一點(diǎn)P,使以M、N、D、E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面內(nèi),將一副直角三角板按如圖所示的方式擺放,其中三角形ABC為含60°角的直角三角板,三角形BDE為含45°角的直角三角板.
(1)如圖1,若點(diǎn)D在AB上,則∠EBC的度數(shù)為 ;
(2)如圖2,若∠EBC=170°,則∠α的度數(shù)為 ;
(3)如圖3,若∠EBC=118°,求∠α的度數(shù);
(4)如圖3,若0°<∠α<60°,求∠ABE-∠DBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在正方形ABCD中,AB=4,點(diǎn)G是射線AB上的一個(gè)動(dòng)點(diǎn),以DG為邊向右作正方形DGEF,作EH⊥AB于點(diǎn)H.
(1)若點(diǎn)G在點(diǎn)B的右邊.試探索:EHBG的值是否為定值,若是,請(qǐng)求出定值;若不是,請(qǐng)說(shuō)明理由.
(2)連接EB,在G點(diǎn)的整個(gè)運(yùn)動(dòng)(點(diǎn)G與點(diǎn)A重合除外)過(guò)程中,求∠EBH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB邊為直徑的⊙O經(jīng)過(guò)點(diǎn)P,C是⊙O上一點(diǎn),連結(jié)PC交AB于點(diǎn)E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若點(diǎn)C是弧AB的中點(diǎn),已知AB=4,求CECP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年12月16日,南京大報(bào)恩寺遺址公園正式對(duì)外開(kāi)放.某校數(shù)學(xué)興趣小組想測(cè)量大報(bào)恩塔的高度.如圖,成員小明利用測(cè)角儀在B處測(cè)得塔頂?shù)难鼋铅?63.5°,然后沿著正對(duì)該塔的方向前進(jìn)了13.1m到達(dá)E處,再次測(cè)得塔頂?shù)难鼋铅?71.6°.測(cè)角儀BD的高度為1.4m,那么該塔AC的高度是多少?(參考數(shù)據(jù):sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.00,sin71.6°≈0.95,cos71.6°≈0.30,tan71.6°≈3.00)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com