【題目】如圖,AB為⊙O的直徑,CF切⊙O于點(diǎn)C,BFCF于點(diǎn)F,點(diǎn)D在⊙O上,CDAB于點(diǎn)E,∠BCE=BCF
1)求證:弧AC=AD
2)點(diǎn)G在⊙O上,∠GCD=FCD,連接DO并延長(zhǎng)交CG于點(diǎn)H,求證:CH=GH;
3)在(2)的條件下,連接AG,AG=3,CF=2,求CG的長(zhǎng).

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3

【解析】

1)如圖1,連接半徑,根據(jù)切線的性質(zhì)得出垂直,與已知BFFC,得BFOC,所以∠BEC=BFC=90°,由垂徑定理得:弧AC=AD;
2)如圖2,根據(jù)同圓半徑相等得∠OCD=D,由切線的性質(zhì)得∠FCD+OCD=90°,根據(jù)等量代換得:
DCG+D=90°,所以∠DHC=90°,由垂徑定理得CH=HG;
3)如圖3中,延長(zhǎng)GAM,使得AD=AM,連接DM,延長(zhǎng)CGN,使得GN=GD,連接AN,作DJAMJ.首先證明CAD≌△MAD,得AM=ACDM=CD=DG,同理可得GN=DG,AN=AD=AC,再證明DM2-DA2=DJ2+JM2-DJ2+AJ2=JM+AJ)(JM-AJ=AMAG,求出AD,同理可得AN2-AG2=GNCG,延長(zhǎng)即可解決問(wèn)題.

證明:(1)如圖1,連接OC,

OC=OB,
∴∠OBC=OCB,
FC是⊙O的切線,
OCFC
BFFC,
BFOC,∠BFC=90°,
∴∠OCB=FBC
∴∠OBC=FBC,
∵∠BCE=BCF,
∴△FBC∽△EBC
∴∠BEC=BFC=90°,
OBDC
∴弧AC=AD;
2)如圖2,連接OC

OC=OD,
∴∠OCD=D
FC是⊙O的切線,
∴∠FCD+OCD=90°
∵∠FCD=DCG,
∴∠DCG+D=90°
∴∠DHC=90°,
DHCG,
DH經(jīng)過(guò)圓心O,
CH=HG
3)如圖3中,延長(zhǎng)GAM,使得AD=AM,連接DM,延長(zhǎng)CGN,使得GN=GD,連接AN,作DJAMJ

CE=CF=2,
CD=2
DC=DG,AC=AD,
∵∠DAM=DCG=CAD,
∴△CAD≌△MAD,
AM=ACDM=CD=DG,
同理可證GN=DGAN=AD=AC,
DM2-DA2=DJ2+JM2-DJ2+AJ2=JM+AJ)(JM-AJ=AMAG
∴(42-AD2=AD3,
解得AD=13,
同理在等腰三角形NAC中可得AN2-AG2=GNCG,
169-9=4CG,CG=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)原點(diǎn)的直線與反比例函數(shù)k>0)的圖象交于A,B兩點(diǎn),點(diǎn)A在第一象限點(diǎn)Cx軸正半軸上,連結(jié)AC交反比例函數(shù)圖象于點(diǎn)D.AE為∠BAC的平分線,過(guò)點(diǎn)BAE的垂線,垂足為E,連結(jié)DE.若AC=3DC,△ADE的面積為8,則k的值為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,∠DAC的平分線交DC于點(diǎn)E,若點(diǎn)P,Q分別是AD和AE上的動(dòng)點(diǎn),則DQ+PQ的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠BAC=60°,點(diǎn)DAB上,點(diǎn)E,FBC上,∠ADE=60°,∠BAF=2BED.

1)如圖1,求證:AF=AC

2)如圖2,當(dāng)EBC的中點(diǎn)時(shí),求證:AD-BD=AF;

3)如圖3,在(2)的條件下,在AB上取點(diǎn)G,使∠ACG=BED,連接CGAF于點(diǎn)M,若BD=3,FM=8,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,點(diǎn)DAB上的一點(diǎn),連接CDCEAB,BECD,且CE=AD.

(1)求證:四邊形BDCE是菱形;

(2)過(guò)點(diǎn)EEFBD,垂足為點(diǎn)F,若點(diǎn)FBD的中點(diǎn),EB=6,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸相交于A.B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),頂點(diǎn)在折線MPN上移動(dòng),它們的坐標(biāo)分別為M(﹣1,4.P34.N3,1).若在拋物線移動(dòng)過(guò)程中,點(diǎn)A橫坐標(biāo)的最小值為﹣3.則ab+c的最小值是( 。

A.15B.12C.4D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yax2+bx+5x軸交于A(﹣1,0),B5,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)點(diǎn)D是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)CB不重合),過(guò)點(diǎn)DDFx軸于點(diǎn)F,交直線BC于點(diǎn)E,連接BD,直線BC能否把△BDF分成面積之比為23的兩部分?若能,請(qǐng)求出點(diǎn)D的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

3)若M為拋物線對(duì)稱(chēng)軸上一動(dòng)點(diǎn),使得△MBC為直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為10元,試銷(xiāo)過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量(萬(wàn)件)與銷(xiāo)售單價(jià)(元)之間的關(guān)系可以近似地看作一次函數(shù),且當(dāng)時(shí),;當(dāng)時(shí),.

1)求出銷(xiāo)售量(萬(wàn)件)與銷(xiāo)售單價(jià)(元)之間的函數(shù)關(guān)系式;

2)若每月的利潤(rùn)為(萬(wàn)元),求出利潤(rùn)(萬(wàn)元)與銷(xiāo)售單價(jià)(元)的函數(shù)關(guān)系式?當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),廠商每月能獲得的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】泉州市旅游資源豐富,①清源山、②開(kāi)元寺、③崇武古城三個(gè)景區(qū)是人們節(jié)假日玩的熱點(diǎn)景區(qū),張老師對(duì)八(1)班學(xué)生五·一小長(zhǎng)假隨父母到這三個(gè)景區(qū)游玩的計(jì)劃做了全面調(diào)查,調(diào)查分四個(gè)類(lèi)別:A、游三個(gè)景區(qū);B,游兩個(gè)景區(qū);C,游一個(gè)景區(qū):D,不到這三個(gè)景區(qū)游玩現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完整的條形統(tǒng)計(jì)圖和廟形統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:

1)八(1)班共有學(xué)生   人在扇形統(tǒng)計(jì)圖中,表示B類(lèi)別的扇形的圓心角的度數(shù)為   ;

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若小華、小剛兩名同學(xué),各自從三個(gè)最區(qū)中隨機(jī)選一個(gè)作為51日游玩的景區(qū),請(qǐng)用樹(shù)狀圖或列表法求他們選中同個(gè)景區(qū)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案