【題目】如圖,邊長為3的正方形OABC的兩邊在兩坐標軸上,拋物線y=-x2bxc經(jīng)過點A,C,與x軸交于另一點D,P為第一象限內(nèi)拋物線上一點,過P點作y軸的平行線交x 軸于點Q,交AC于點E.

(1)求拋物線解析式及點D的坐標

(2)E點作x軸的平行線交AB于點F,若以PE,F為頂點的三角形與ODC相似,求點P坐標;

(3)P點作PHACH,是否存在點P使PEH的周長取得最大值,若存在,請求出點P坐標及PEH周長的最大值,若不存在,請說明理由.

【答案】(1)D(-1,0);(2)點P坐標為();(3)存在為P使△PEH周長取得最大值,點P坐標為(1.5,3.75),△PEH周長最大值為.

【解析】分析1)由正方形邊長是3, 得到A、C的坐標,然后把A、C的坐標代入,解方程即可得到拋物線解析式,令y=0,解一元二次方程即可得到點D的坐標. 

2)設(shè)Pm,-m2+2m+3) (0<m<3),先用待定系數(shù)法求出直線AC的解析式為y=-x+3,設(shè)E(m,3-m),得到PE=-m2+3m,EF=3-m.因為∠PEF=∠COD=900,故要使△PEF與△COD相似,只需,分別解方程即可得出結(jié)論.

3)由正方形的性質(zhì)可以得到∠PEH=∠AEQ=450.在RtPEH中,PHEH.設(shè)△PEH的周長為l,則lPE+PH+EH=()PE,故當(dāng)PE取最大值時l有最大值PE=-m2+3m,配方即可得出結(jié)論. 

詳解1)∵正方形邊長是3, ∴A3,0),C03). 

。

解得

y=-x2+2x+3

由-x2+2x+30得  x1=3,x2=-1.∴D(-1,0).

2)設(shè)Pm,-m2+2m+3) (0<m<3).

設(shè)AC的解析式為:y=kx+b,

.解得:

ACy=-x+3E(m,3-m). 

PE=-m2+2m+3-(3-m)=-m2+3m,EF=3-m

∵∠PEF=∠COD=900,∴要使△PEF與△COD相似,

只需

①當(dāng)時,. 解得:m1=m2=3

0<m<3,所以舍去. 

②當(dāng)時,, 解得:m1=,m2=3

0<m<3,所以m=

當(dāng)x=時,y=

∴點P坐標為(). 

3)∵OABC是正方形,∴∠OAB=900AC平分∠OAB.∴∠OAC=450

又∵∠PQA=900,∴∠AEQ=900-∠OAC=450

PEH=∠AEQ=450

RtPEH中,PHPEsin450=,EHPEcos450=. 

設(shè)△PEH的周長為l,則lPE+PH+EH=()PE

∴當(dāng)PE取最大值時l有最大值. 

PE=-m2+3m=-(m-1.5)2+2.25,

即當(dāng)m=1.5PE有最大值2.25

l最大=()PE=. 

當(dāng)m=1.5時,-m2+2m+33.75

答:存在為P使△PEH周長取得最大值,點P坐標為(1.5,3.75),△PEH周長最大值為. 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F. 已知折痕AEcmtanEFC=,則矩形ABCD的周長為______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知成正比例,且時,.

(1)寫出之間的函數(shù)關(guān)系系;

(2)計算時,的值;

(3)計算時,的值;

(4)若點在這個函數(shù)圖象上,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,ACBC,AD平分∠BACBC于點D,DEADAB于點E,MAE的中點,BFBCCM的延長線于點F,BD=4,CD=3.下列結(jié)論:①∠AED=ADC; ;ACBE=12;3BF=4AC;其中正確結(jié)論的個數(shù)有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下面一列數(shù),探究其中的規(guī)律:—1,,,,

1)填空:第11,1213三個數(shù)分別是 , ,

2)第2020個數(shù)是什么?

3)如果這列數(shù)無限排列下去,與哪個數(shù)越來越近?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.

(1)這次調(diào)查的市民人數(shù)為________人,m=________,n=________;

(2)補全條形統(tǒng)計圖;

(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=-x2+2x+3與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點C.

(1)求直線BC的表達式;

(2)拋物線的對稱軸上存在點P,使∠APB=∠ABC,利用圖①求點P的坐標;

(3)點Q在y軸右側(cè)的拋物線上,利用圖②比較∠OCQ與∠OCA的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過反比例函數(shù))圖像上一動點MMN⊥x軸交x軸于點NQ是直線MN上一點,且MQ2MN,過點QQR∥軸交該反比例函數(shù)圖像于點R,已知SQRM=8,那么k的值為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳環(huán)保,你我同行兩年來,揚州市區(qū)的公共自行車給市民出行帶來切實方便電視臺記者在某區(qū)街頭隨機選取了市民進行調(diào)查,調(diào)查的問題是您大概多久使用一次公共自行車?將本次調(diào)查結(jié)果歸為四種情況:A每天都用;B經(jīng)常使用;C偶爾使用D從未使用將這次調(diào)查情況整理并繪制如下兩幅統(tǒng)計圖:

根據(jù)圖中的信息,解答下列問題:

1本次活動共有 位市民參與調(diào)查

2補全條形統(tǒng)計圖;

3根據(jù)統(tǒng)計結(jié)果若該區(qū)有46萬市民,請估算每天都用公共自行車的市民約有多少人?

查看答案和解析>>

同步練習(xí)冊答案