【題目】如圖,四邊形ABCD是正方形,直線L1、L2、L3,若L1與L2的距離為5,L2與L3的距離7,則正方形ABCD的面積等于( )
A.70B.74C.144D.148
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,李師傅想用長為80米的柵欄,再借助教學(xué)樓的外墻圍成一個矩形的活動區(qū). 已知教學(xué)樓外墻長50米,設(shè)矩形的邊米,面積為平方米.
(1)請寫出活動區(qū)面積與之間的關(guān)系式,并指出的取值范圍;
(2)當(dāng)為多少米時,活動區(qū)的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點A(﹣2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與y軸的交點為C,求△OCB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:如圖1,在△ABC中,BE是AC邊上的中線, D是BC邊上的一點,CD:BD=1:2,AD與BE相交于點P,求的值.小昊發(fā)現(xiàn),過點A作AF∥BC,交BE的延長線于點F,通過構(gòu)造△AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
(1)的值為 ;
(2)參考小昊思考問題的方法,解決問題:
如圖3,在△ABC中,∠ACB=90°,點D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3 .
求 的值;
若CD=2,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】猜想與證明:小強想證明下面的問題:“有兩個角(圖中的和)相等的三角形是等腰三角形”.但他不小心將圖弄臟了,只能看見圖中的和邊.
(1)請問:他能夠把圖恢復(fù)成原來的樣子嗎?若能,請你幫他寫出至少兩種以上恢復(fù)的方法并在備用圖上恢復(fù)原來的樣子.
(2)你能夠證明這樣的三角形是等腰三角形嗎?(至少用兩種方法證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系xOy中,如果將點P繞點T(0,t)(t>0)旋轉(zhuǎn)180°得到點Q,那么稱線段QP為“拓展帶”,點Q為點P的“拓展點”.
(1)當(dāng)t=3時,點(0,0)的“拓展點”坐標(biāo)為 ,點(﹣1,1)的“拓展點”坐標(biāo)為 ;
(2)如果 t>1,當(dāng)點M(2,1)的“拓展點”N在函數(shù)y=﹣的圖象上時,求t的值;
(3)當(dāng)t=1時,點Q為點P(2,0)的“拓展點”,如果拋物線 y=(x﹣m)2﹣1與“拓展帶”PQ有交點,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,點O是AC上一動點,過點O作直線MN∥BC,若MN交∠BCA的平分線于點E,交∠DCA的平分線于點F,連接AE、AF.
⑴說明:OE=OF
⑵當(dāng)點O運動到何處時,四邊形AECF是矩形,證明你的結(jié)論
⑶在⑵的條件下,當(dāng)⊿ABC滿足什么條件時,四邊形AECF為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在中,,AD平分,點M是AC的中點,在AD上取點E,使得,EM與DC的延長線交于點F.
當(dāng)時,求AE的長;求的大小.
當(dāng)時,探究與的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com