【題目】已知,在中,,AD平分,點(diǎn)MAC的中點(diǎn),在AD上取點(diǎn)E,使得,EMDC的延長(zhǎng)線交于點(diǎn)F.

當(dāng)時(shí),AE的長(zhǎng);的大。

當(dāng)時(shí),探究的數(shù)量關(guān)系.

【答案】(1)①;;(2)

【解析】

(1)①先根據(jù)等腰直角三角形的性質(zhì)求出AD=AB=,根據(jù)線段中點(diǎn)的定義得出DE=AM=,再代入AE=AD-DE即可;

②連接DM,根據(jù)等腰直角三角形的性質(zhì)以及已知條件得出AD⊥BC,AD=DC,DM=MC=AM=DE,DM⊥AC,∠MDC=∠MDE=45°,利用三角形內(nèi)角和定理以及等邊對(duì)等角求出∠DEM=(180°-45°)=67.5°,那么∠F=90°-67.5°=22.5°;

(2)當(dāng)∠BAC≠90°時(shí),先根據(jù)等腰三角形的性質(zhì)得出∠ADC=90°.設(shè)∠BAC=4x,則∠DAC=2x.根據(jù)直角三角形斜邊中線的性質(zhì)得出DM=MC=AM=DE,利用三角形內(nèi)角和定理以及等邊對(duì)等角求出∠ADM=∠DAC=2x,∠DEM=(180°-2x)=90°-x,那么∠F=90°-DEM=90°-(90°-x)=x,從而得出∠BAC=4∠F.

解:當(dāng)時(shí),

;

連接DM.

,,AD平分

,

點(diǎn)MAC的中點(diǎn),

,,

,

,

;

當(dāng)時(shí),理由如下:

,AD平分

設(shè),則

點(diǎn)MAC的中點(diǎn),

,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD的對(duì)角線ACBD相交于點(diǎn)E,AD=DC,DC2=DEDB,求證:

(1)BCE∽△ADE;

(2)ABBC=BDBE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,直線L1、L2、L3,若L1L2的距離為5L2L3的距離7,則正方形ABCD的面積等于(

A.70B.74C.144D.148

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形的邊長(zhǎng).某一時(shí)刻,動(dòng)點(diǎn)點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),問(wèn):

(1)經(jīng)過(guò)多少時(shí)間,的面積等于矩形面積的?

(2)是否存在時(shí)刻t,使以A,M,N為頂點(diǎn)的三角形與相似?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了促進(jìn)節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實(shí)行居民生活用電階梯電價(jià)方案,圖中折線反映了每戶(hù)每月用電電費(fèi)y(元)與用電量x(度)間的函數(shù)關(guān)系式.

1)根據(jù)圖象,階梯電價(jià)方案分為三個(gè)檔次,填寫(xiě)下表:

檔次

第一檔

第二檔

第三檔

每月用電量x(度)

0x≤140



2)小明家某月用電120度,需交電費(fèi)

3)求第二檔每月電費(fèi)y(元)與用電量x(度)之間的函數(shù)關(guān)系式;

4)在每月用電量超過(guò)230度時(shí),每多用1度電要比第二檔多付電費(fèi)m元,小剛家某月用電290度,交電費(fèi)153元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)分解因式  (直接寫(xiě)出結(jié)果);若是整數(shù),則一定能被一個(gè)常數(shù)整除,這個(gè)常數(shù)的最大值是  

2)閱讀,并解決問(wèn)題:

分解因式

解:設(shè),則原式

這樣的解題方法叫做“換元法”,即當(dāng)復(fù)雜的多項(xiàng)式中,某一部分重復(fù)出現(xiàn)時(shí),我們用字母將其替換,從而簡(jiǎn)化這個(gè)多項(xiàng)式.換元法是一個(gè)重要的數(shù)學(xué)方法,不少問(wèn)題能用換元法解決.請(qǐng)你用“換元法”對(duì)下列多項(xiàng)式進(jìn)行因式分解:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)某班同學(xué)在慶祝2015年元旦晚會(huì)上進(jìn)行抽獎(jiǎng)活動(dòng).在一個(gè)不透明的口

袋中有三個(gè)完全相同的小球,把它們分別標(biāo)號(hào)1、23.隨機(jī)摸出一個(gè)小球記下標(biāo)號(hào)后放回?fù)u勻,再?gòu)闹须S

機(jī)摸出一個(gè)小球記下標(biāo)號(hào).

(1)請(qǐng)用列表或畫(huà)樹(shù)形圖的方法(只選其中一種),表示兩次摸出小球上的標(biāo)號(hào)的所有結(jié)果;

(2)規(guī)定當(dāng)兩次摸出的小球標(biāo)號(hào)相同時(shí)中獎(jiǎng),求中獎(jiǎng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,AC=8cm,BC=6cm,P點(diǎn)在BC上,從B點(diǎn)到C點(diǎn)運(yùn)動(dòng)不包括 C點(diǎn),點(diǎn) P運(yùn)動(dòng)的速度為1cm/s;Q點(diǎn)在AC上從C點(diǎn)運(yùn)動(dòng)到A點(diǎn)不包括A點(diǎn),速度為2cm/s,若點(diǎn) P、Q 分別從B、C 同時(shí)運(yùn)動(dòng),且運(yùn)動(dòng)時(shí)間記為t秒,請(qǐng)解答下面的問(wèn)題,并寫(xiě)出探索的主要過(guò)程.

(1)當(dāng) t 為何值時(shí),P、Q 兩點(diǎn)的距離為 4cm?

(2)請(qǐng)用配方法說(shuō)明,點(diǎn)P運(yùn)動(dòng)多少時(shí)間時(shí),四邊形BPQA的面積最。孔钚∶娣e是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一個(gè)等腰直角三角板放在黑板上畫(huà)好了的平面直角坐標(biāo)系內(nèi),如圖,已知直角頂點(diǎn)A的坐標(biāo)為(0,1),另一個(gè)頂點(diǎn)B的坐標(biāo)為(﹣55),則點(diǎn)C的坐標(biāo)為________

查看答案和解析>>

同步練習(xí)冊(cè)答案