【題目】四邊形ABCD是正方形,點E是直線AB上的一動點,且△AEC是以AC為腰的等腰三角形,則∠BCE的度數(shù)為_____.
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數(shù)相同.
求甲、乙兩種商品的每件進價;
該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
根據(jù)絕對值的定義,|x| 表示數(shù)軸上表示數(shù)x的點與原點的距離,那么,如果數(shù)軸上兩點P、Q表示的數(shù)為x1,x2時,點P與點Q之間的距離為PQ=|x1-x2|.
根據(jù)上述材料,解決下列問題:
如圖,在數(shù)軸上,點A、B表示的數(shù)分別是-4, 8(A、B兩點的距離用AB表示),點M、N是數(shù)軸上兩個動點,分別表示數(shù)m、n.
(1)AB=_____個單位長度;若點M在A、B之間,則|m+4|+|m-8|=______;
(2)若|m+4|+|m-8|=20,求m的值;
(3)若點M、點N既滿足|m+4|+n=6,也滿足|n-8|+m=28,則m= ____ ;n=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AC⊥BC于C,BC=a,CA=b,AB=c,下列圖形中⊙O與△ABC的某兩條邊或三邊所在的直線相切,則⊙O的半徑為的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線:與直線:相交于點,直線、分別交軸于、兩點,矩形的頂點、分別在、上,頂點、都在軸上,且點與點重合,那么 __________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn).
(1)求證:△ABE≌△CDF;
(2)若AC與BD交于點O,求證:AO=CO.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系中兩定點A(﹣1,0)、B(4,0),拋物線y=ax2+bx﹣2(a≠0)過點A,B,頂點為C,點P(m,n)(n<0)為拋物線上一點.
(1)求拋物線的解析式和頂點C的坐標;
(2)當∠APB為鈍角時,求m的取值范圍;
(3)若m>,當∠APB為直角時,將該拋物線向左或向右平移t(0<t<)個單位,點C、P平移后對應的點分別記為C′、P′,是否存在t,使得首位依次連接A、B、P′、C′所構(gòu)成的多邊形的周長最短?若存在,求t的值并說明拋物線平移的方向;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格當中,三角形的三個頂點都在格點上.直線與直線相交于點.
(1)畫出將三角形向右平移5個單位長度后的三角形(點的對應點分別是點).
(2)畫出三角形關(guān)于直線對稱的三角形(點的對應點分別是點).
(3)畫出將三角形繞著點旋轉(zhuǎn)后的三角形(點的對應點分別是點).
(4)在三角形,,中,三角形 與三角形 成軸對稱,三角形 與三角形 成中心對稱
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com