【題目】如圖,AH是△ABC的高,D是邊AB上一點,CDAH交于點E.已知AB=AC=6,cosB=

ADDB=1∶2.

1)求△ABC的面積;

2)求CEDE.

【答案】解:(1);(2).

【解析】試題分析:(1)根據(jù)題意和銳角三角函數(shù)可以求得BHAH的長,從而可以求得△ABC的面積

2)根據(jù)三角形的相似和題意可以求得CEDE的值.

試題解析:(1AB=AC=6,cosB=AH是△ABC的高,BH=4BC=2BH=8,AH=,∴△ABC的面積是 ==8;

2)作DFBC于點FDFBHAHBH,DFAHADDB=12,BH=CH,ADAB=13,CEDE=31

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O是以AB為直徑的ABC的外接圓,過點A作O的切線交OC的延長線于點D,交BC的延長線于點E.

(1)求證:DAC=DCE;

(2)若AB=2,sinD=,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC與BD相交于點O,AC平分∠DAB,且∠DAC=∠DBC,那么下列結(jié)論不一定正確的是(  )

A. △AOD∽△BOC B. △AOB∽△DOC C. CD=BC D. BCCD=ACOA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:

第1個等式:a1=

第2個等式:a2=

第3個等式:a3=

第4個等式:a4=

……

請回答下列問題:

(1)按上述等式的規(guī)律,列出第5個等式:a5=   =   

(2)用含n的式子表示第n個等式:an=   =   

(3)求a1+a2+a3+a4+…+a2017的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bxa≠0)經(jīng)過點A20),點B3,3),BCx軸于點C,連接OB,等腰直角三角形DEF的斜邊EFx軸上,點E的坐標為(﹣40),點F與原點重合

1)求拋物線的解析式并直接寫出它的對稱軸;

2DEF以每秒1個單位長度的速度沿x軸正方向移動,運動時間為t秒,當點D落在BC邊上時停止運動,設(shè)DEFOBC的重疊部分的面積為S,求出S關(guān)于t的函數(shù)關(guān)系式;

3)點P是拋物線對稱軸上一點,當ABP是直角三角形時,請直接寫出所有符合條件的點P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上三點M,O,N對應(yīng)的數(shù)分別是-1,0,3,點P為數(shù)軸上任意點,其對應(yīng)的數(shù)為x.如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設(shè)t分鐘時P點到點M、點N的距離相等,則t的值為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù),在每個象限內(nèi)y隨著x的增大而增大,點Pa1, 2)在這個反比例函數(shù)上,a的值可以是(

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景

如圖1,在正方形ABCD的內(nèi)部,作DAE=ABF=BCG=CDH,根據(jù)三角形全等的條件,易得DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。

類比研究

如圖2,在正ABC的內(nèi)部,作BAD=CBE=ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)。

(1)ABD,BCE,CAF是否全等?如果是,請選擇其中一對進行證明;

(2)DEF是否為正三角形?請說明理由;

(3)進一步探究發(fā)現(xiàn),ABD的三邊存在一定的等量關(guān)系,設(shè),,,請?zhí)剿?/span>,滿足的等量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為進一步推進青少年毒品預防教育“627“工程,切實提高廣大青少年識毒、防毒、拒毒的意識和能力,我市高度重視全國青少年禁毒知識競賽活動.針對某校七年級學生的知識競賽成績繪制了如圖不完整的統(tǒng)計圖表.

知識競賽成績頻數(shù)分布表

組別

成績(分數(shù))

人數(shù)

A

95≤x<100

300

B

90≤x<95

a

C

85≤x<90

150

D

80≤x<85

200

E

75≤x<80

b

根據(jù)所給信息,解答下列問題.

(1)a____,b____

(2)請求出C組所在扇形統(tǒng)計圖中的圓心角的度數(shù).

(3)補全知識競賽成績頻數(shù)分布直方圖.

(4)已知我市七年級有180000名學生,請估算全市七年級知識競賽成績低于80分的人數(shù).

查看答案和解析>>

同步練習冊答案