【題目】如圖,矩形ABCD的頂點(diǎn)A,B,D分別落在雙曲線y=(k>0)的兩個(gè)分支上,AB邊經(jīng)過原點(diǎn)O,CB邊與x軸交于點(diǎn)E,且EC=EB,若點(diǎn)A的橫坐標(biāo)為1,則矩形ABCD的面積_____.
【答案】.
【解析】
過點(diǎn)B作BM⊥x軸于點(diǎn)M,過點(diǎn)C作CN⊥x軸于點(diǎn)N,過點(diǎn)A作AF⊥x軸于點(diǎn)F,設(shè)A點(diǎn)坐標(biāo)為(1,a),則OB、BE、EM均可用a表示,易知△CNE≌△BME,通過線段等量關(guān)系可求用a表示的C點(diǎn)坐標(biāo),繼而求得D點(diǎn)坐標(biāo),根據(jù)A、D都在反比例函數(shù)圖象上,得到關(guān)于a的方程,求解a值,再求出AB和BC值,則矩形面積可求.
設(shè)A點(diǎn)坐標(biāo)為(1,a),過點(diǎn)B作BM⊥x軸于點(diǎn)M,過點(diǎn)C作CN⊥x軸于點(diǎn)N,過點(diǎn)A作AF⊥x軸于點(diǎn)F,如下圖所示,
由A(1,a),
由對(duì)稱性質(zhì)有B(﹣1,﹣a),BM=AF=a,OM=OF=1,
∴OB=OA=,
∵tan∠BOE=tan∠AOF,
∴,即,
∴BE=,
∴,
∵BE=CE,∠CEN=∠BEM,∠CNE=∠BME,
∴△CNE≌△BME,
∴CN=BM=a,NE=EM=a2,CE=BE=,
∴ON=2a2+1,
∴C(﹣2a2﹣1,a),
∵A(1,a),B(﹣1,﹣a),BC//AD,AD=BC,
∴D(1﹣2a2,3a),
∵A、D都在反比例函數(shù)圖象上,
∴3a(1﹣2a2)=a1,
解得a=,
∴AB=2OA=2=,BC=2BE=2a=,
∴矩形ABCD的面積 .
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 與 x 軸交于點(diǎn) A、B,與 y 軸交于點(diǎn) C,且 OC=2OB, 點(diǎn) D 為線段 OB 上一動(dòng)點(diǎn)(不與點(diǎn) B 重合),過點(diǎn) D 作矩形 DEFH,點(diǎn) H、F 在拋物線上,點(diǎn) E 在 x 軸 上.
(1)求拋物線的解析式;
(2)當(dāng)矩形 DEFH 的周長(zhǎng)最大時(shí),求矩形 DEFH 的面積;
(3)在(2)的條件下,矩形 DEFH 不動(dòng),將拋物線沿著 x 軸向左平移 m 個(gè)單位,拋物線與矩形 DEFH的邊交于點(diǎn) M、N,連接 M、N.若 MN 恰好平分矩形 DEFH 的面積,求 m 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】題目:為了美化環(huán)境,某地政府計(jì)劃對(duì)轄區(qū)內(nèi)的土地進(jìn)行綠化.為了盡快完成任務(wù),實(shí)際平均每月的綠化面積是原計(jì)劃的1.5倍,結(jié)果提前2個(gè)月完成任務(wù).求原計(jì)劃平均每月的綠化面積.
甲同學(xué)所列的方程為
乙同學(xué)所列的方程為
(1)甲同學(xué)所列的方程中表示 .乙同學(xué)所列的方程中表示 .
(2)任選甲、乙兩同學(xué)的其中一個(gè)方法解答這個(gè)題目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線與軸交于、兩點(diǎn),與直線交于、兩點(diǎn),直線與軸交于點(diǎn).
(1)求直線的解析式:
(2)若點(diǎn)在線段上以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)向點(diǎn)運(yùn)動(dòng)(不與點(diǎn)、重合),同時(shí),點(diǎn)在射線上以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)向點(diǎn)方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒,的面積為,求關(guān)于的函數(shù)關(guān)系式,并求取何值時(shí),最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,在和中,,連接交于點(diǎn).求證:;并直接寫出______.
(2)類比探究:如圖2,在和中,,連接交的延長(zhǎng)線于點(diǎn).請(qǐng)判斷的值及的度數(shù).
(3)拓展延伸:在(2)的條件下,將繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),所在直線交于點(diǎn).若,請(qǐng)直接寫出當(dāng)點(diǎn)與點(diǎn)重合時(shí)的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖點(diǎn)A,E,F,C在同一直線上,AE=EF=FC,過E,F分別作DE⊥AC,BF⊥AC,連結(jié)AB,CD,BD,BD交AC于點(diǎn)G,若AB=CD.
(1)求證:△ABF≌△CDE.
(2)若AE=ED=2,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為防控“新型冠狀病毒”,某超市分別用1600元、6000元購進(jìn)兩批防護(hù)口罩,第二批防護(hù)口罩的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批口罩進(jìn)貨單價(jià)多少元?
(2)若這兩次購買防護(hù)口罩過程中所產(chǎn)生其他費(fèi)用不少于600元,那么該超市購買這兩批防護(hù)口罩的平均單價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司推出一款產(chǎn)品,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品的日銷售量y(個(gè))與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,關(guān)于銷售單價(jià),日銷售量,日銷售利潤(rùn)的幾組對(duì)應(yīng)值如表:
銷售單價(jià)x(元) | 85 | 95 | 105 | 115 |
日銷售量y(個(gè)) | 175 | 125 | 75 | 25 |
日銷售利潤(rùn)w(元) | 875 | 1875 | 1875 | 875 |
(注:日銷售利潤(rùn)=日銷售量×(銷售單價(jià)﹣成本單價(jià)))
(1)求y與x的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)x為多少元時(shí),日銷售利潤(rùn)w最大?最大利潤(rùn)是多少元?
(3)當(dāng)銷售單價(jià)x為多少元時(shí),日銷售利潤(rùn)w在1500元以上?(請(qǐng)直接寫出x的范圍)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的閱讀能力,我市某校開展了“讀好書,助成長(zhǎng)”的活動(dòng),并計(jì)劃購置一批圖書,購書前,對(duì)學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問題:
(1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計(jì)圖中的m= ,n= .
(2)已知該校共有3600名學(xué)生,請(qǐng)你估計(jì)該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
(3)學(xué)校將舉辦讀書知識(shí)競(jìng)賽,九年級(jí)1班要在本班3名優(yōu)勝者(2男1女)中隨機(jī)選送2人參賽,請(qǐng)用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com