【題目】如圖,拋物線 與 x 軸交于點 A、B,與 y 軸交于點 C,且 OC=2OB, 點 D 為線段 OB 上一動點(不與點 B 重合),過點 D 作矩形 DEFH,點 H、F 在拋物線上,點 E 在 x 軸 上.
(1)求拋物線的解析式;
(2)當矩形 DEFH 的周長最大時,求矩形 DEFH 的面積;
(3)在(2)的條件下,矩形 DEFH 不動,將拋物線沿著 x 軸向左平移 m 個單位,拋物線與矩形 DEFH的邊交于點 M、N,連接 M、N.若 MN 恰好平分矩形 DEFH 的面積,求 m 的值.
【答案】(1)拋物線的解析式為; (2)10; (3)m的值為:
【解析】
(1)先求出點C的坐標,由OC=2OB,可得點B坐標,將點B坐標代入 可求出a的值,即可寫出拋物線的解析式;
(2)設點D坐標為(x,0)用含x的代數(shù)式表示出矩形DEFH的周長,用函數(shù)的思想求出取其最大值時x的值,即求出點D的坐標,進一步可求出矩形DEFH的面積:
(3)如圖,連接BH,EH, DF.設EH與DF交于點G,過點G作BH的平行線,交ED于M. 交HF于點N,則直線MN將矩形DEFH的面積分成相等的兩半,依次求出直線BH. MN的解析式,再求出點M的坐標,即可得出m的值.
解: (1)在拋物線 中,
當x=0時, y=-4.
∴C (0,-4)
∴OC=4.
∵OC=2OB.
∴OB=2. .
∴B(2.0).
將B (2, 0)代入,得,
∴a=;
∴拋物線的解析式為
(2)設點D坐標為(x, 0) ,
∵四邊形DEFH為矩形.
∴,
∵
∴拋物線對稱軸為x=-1,
∴點H到對稱軸的距離為x+1.
由對稱性可知DE=FH=2x+2,
∴矩形DEFH的周長為:
∴當x=1時,矩形DEFH周長取得最大值13,
∴此時
∴HF=2x+2=4. DH=
∴
(3)如圖,連接BH, EH, DF.設EH與DF交于點G,
過點G作BH的平行線,交ED于M,交HF于點N,則直線MN將矩形DEFH的面積分成相等的兩半,
由(2)知,拋物線對稱軸為x=-1, ,
∴
設直線BH的解析式為y=kx+b,
將點B (2. 0),代入, 得,
解得
∴直線BH的解析式為.
∴可設直線MN的解析式為
將點 代入,得
∴直線MN的解析式為
當y=0時,
∴
∵B(2,0),
∴將拋物線沿著x軸向左平移個單位,拋物線與矩形DEFH的邊交于點M、N,連接M、N,則MN恰好平分矩形DEFH的面積,
∴m的值為:
科目:初中數(shù)學 來源: 題型:
【題目】學校舉行圖書節(jié)義賣活動,將所售款項捐給其他貧困學生.在這次義賣活動中,某班級售書情況如下圖:
下列說法正確的是( )
A.該班級所售圖書的總數(shù)收入是226元
B.在該班級所售圖書價格組成的一組數(shù)據(jù)中,中位數(shù)是4
C.在該班級所售圖書價格組成的一組數(shù)據(jù)中,眾數(shù)是15
D.在該班級所售圖書價格組成的一組數(shù)據(jù)中,方差是2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學活動課上,小明同學根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖像、性質(zhì)進行了探究,下面是小明同學探究過程,請補充完整:
如圖1,已知在,,,,點為邊上的一個動點,連接.設,.
(初步感知)
(1)當時,則①________,②________;
(深入思考)
(2)試求與之間的函數(shù)關系式并寫出自變量的取值范圍;
(3)通過取點測量,得到了與的幾組值,如下表:
0 | 0.5 | 1 | 1.5 | 2. | 2.5 | 3 | 3.5 | 4 | |
2 | 1.8 | 1.7 | _____ | 2 | 2.3 | 2.6 | 3.0 | _____ |
(說明:補全表格時相關數(shù)值保留一位小數(shù))
1)建立平面直角坐標系,如圖2,描出已補全后的表中各對應值為坐標的點,畫出該函數(shù)的圖象;
2)結合畫出的函數(shù)圖象,寫出該函數(shù)的兩條性質(zhì):
①________________________________;②________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將矩形紙片折疊,使得頂點與邊上的動點重合(點不與點、重合),為折痕,點、分別在邊、上.連結、、,其中,與相交于點.過點、、.
(1)若,求證:;
(2)隨著點的運動,若與相切于點,又與相切于點,且,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,,,是鄭州市二七區(qū)三個垃圾存放點,點,分別位于點的正北和正東方向,米.八位環(huán)衛(wèi)工人分別測得的長度如下表:
甲 | 丁 | 丙 | 丁 | 戊 | 戌 | 申 | 辰 | |
(單位:) | 84 | 76 | 78 | 82 | 70 | 84 | 86 | 80 |
他們又調(diào)查了各點的垃圾量,并繪制了下列間不完整的統(tǒng)計圖2.
(1)表中的中位數(shù)是 、眾數(shù)是 ;
(2)求表中長度的平均數(shù);
(3)求處的垃圾量,并將圖2補充完整;
(4)用(2)中的作為的長度,要將處的垃圾沿道路都運到處,已知運送1千克垃圾每米的費用為0.005元,求運垃圾所需的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數(shù)的圖象經(jīng)過點,作AC⊥x軸于點C.
(1)求k的值;
(2)直線AB:圖象經(jīng)過點交x軸于點.橫、縱坐標都是整數(shù)的點叫做整點.線段AB,AC,BC圍成的區(qū)域(不含邊界)為W.
①直線AB經(jīng)過時,直接寫出區(qū)域W內(nèi)的整點個數(shù);
②若區(qū)域W內(nèi)恰有1個整點,結合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B、C的坐標分別為(-1,3)、(-4,1)、(-2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應點B1的坐標是(1,2),則點A1,C1的坐標分別是( )
A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)
C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,正方形中, 點是的中點,過點作于點,過點作垂直的延長線于點,交于點.
(1)求證:;
(2)如圖2,連接,連接并延長交于點I,
①求證:;
②求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的頂點A,B,D分別落在雙曲線y=(k>0)的兩個分支上,AB邊經(jīng)過原點O,CB邊與x軸交于點E,且EC=EB,若點A的橫坐標為1,則矩形ABCD的面積_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com