【題目】某企業(yè)在甲地有一工廠(簡稱甲廠)生產(chǎn)某產(chǎn)品,2017年的年產(chǎn)量過萬件,2018年甲廠經(jīng)過技術(shù)改造,日均生產(chǎn)的該產(chǎn)品數(shù)是該廠2017年的2倍還多2.

1)若甲廠2018年生產(chǎn)200件該產(chǎn)品所需的時間與2017年生產(chǎn)99件該產(chǎn)品所需的時間相同,則2017年甲廠日均生產(chǎn)該產(chǎn)品多少件?

2)由于該產(chǎn)品深受顧客歡迎,2019年該企業(yè)在乙地建立新廠(簡稱乙廠)生產(chǎn)該產(chǎn)品.乙廠的日均生產(chǎn)的該產(chǎn)品數(shù)是甲廠2017年的3倍還多4.同年該企業(yè)要求甲、乙兩廠分別生產(chǎn)mn件產(chǎn)品(甲廠的日均產(chǎn)量與2018年相同),m:n14:25,若甲、乙兩廠同時開始生產(chǎn),誰先完成任務(wù)?請說明理由.

【答案】199件;(2)甲廠先完成任務(wù),理由見詳解.

【解析】

1)設(shè)2017年甲廠日均生產(chǎn)該產(chǎn)品x件,根據(jù)2018年生產(chǎn)200件該產(chǎn)品所需的時間與2017年生產(chǎn)99件該產(chǎn)品所需的時間相同列得方程;

2)先求出甲、乙兩廠的日均生產(chǎn)數(shù)量,用含m的代數(shù)式表示n,再分別表示出甲、乙兩廠的生產(chǎn)時間,進(jìn)行比較即可得到答案.

1)設(shè)2017年甲廠日均生產(chǎn)該產(chǎn)品x件,則2018年甲廠日均生產(chǎn)該產(chǎn)品(2x+2)件,

,

x=99,

經(jīng)檢驗,x=99是原分式方程的解,

答:2017年甲廠日均生產(chǎn)該產(chǎn)品99.

22019年甲廠日均生產(chǎn)件,乙廠日均生產(chǎn)件,

m:n14:25,

,

∴甲廠生產(chǎn)m個所需要的時間為: ,

乙廠生產(chǎn)n個所需要的時間為:

,

∴甲廠先完成任務(wù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從、兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達(dá)地后馬上以另一速度原路返回地(掉頭的時間忽略不計),乙車到達(dá)地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離(千米)與甲車的行駛時間(小時)之間的函數(shù)圖象,則當(dāng)乙車到達(dá)地的時候,甲車與地的距離為__________千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.

(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?

(2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ中PQ的長度等于5cm?

(3)在(1)中,當(dāng)P,Q出發(fā)幾秒時,△PBQ有最大面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)

截長補(bǔ)短法,是初中數(shù)學(xué)兒何題中一種輸助線的添加方法,截長就是在長邊上載取一條線段與某一短邊相等,補(bǔ)短是通過在一條短邊上延長一條線段與另一短邊相等,從而解決問題.

1)如圖1,ABC是等邊三角形,點D是邊BC下方一點,∠BDC120°,探索線段DA、DB、DC之間的數(shù)量關(guān)系.

解題思路:延長DC到點E,使CEBD.連接AE,根據(jù)∠BAC+∠BDC180°,可證∠ABD=∠ACE,易證得ABDACE,得出ADE是等邊三角形,所以ADDE,從而探尋線段DA、DBDC之間的數(shù)量關(guān)系.

根據(jù)上述解題思路,請直接寫出DA、DB、DC之間的數(shù)量關(guān)系是___________

(拓展延伸)

2)如圖2,在RtABC中,∠BAC90°,ABAC.若點D是邊BC下方一點,∠BDC90°,探索線段DADB、DC之間的數(shù)量關(guān)系,并說明理由;

(知識應(yīng)用)

3)如圖3,一副三角尺斜邊長都為14cm,把斜邊重疊擺放在一起,則兩塊三角尺的直角項點之間的距離PQ的長為________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一種單價為元的籃球,如果以單價元出售,那么每月可售出個,根據(jù)銷售經(jīng)驗,售價每提高元,銷售量相應(yīng)減少;

某商場購進(jìn)一種單價為元的籃球,如果以單價元出售,那么每月可售出個,根據(jù)銷售經(jīng)驗,售價每提高元,銷售量相應(yīng)減少;

假設(shè)銷售單價提高元,那么銷售每個籃球所獲得的利潤是________元;這種籃球每月的銷售量是________個;(用含的代數(shù)式表示)

若商店準(zhǔn)備獲利元,則銷售定價為多少元?商店應(yīng)進(jìn)貨多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3,

∴AB=OB·tan 30°=3.

∴點A的坐標(biāo)為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3,

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.

(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建立一次函數(shù)關(guān)系解決問題:甲、乙兩校為了綠化校園,甲校計劃購買A種樹苗,A種樹苗每棵24元;乙校計劃購買B種樹苗,B種樹苗每棵18元.兩校共購買了35棵樹苗.若購進(jìn)B種樹苗的數(shù)量少于A種樹苗的數(shù)量,請給出一種兩校總費(fèi)用最少的方案,并求出該方案所需的總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)玩摸球游戲,準(zhǔn)備了甲、乙兩個口袋,其中甲口袋中放有標(biāo)號為1,23,455個球,乙口袋中放有標(biāo)號為12,344個球.游戲規(guī)則:甲從甲口袋摸一球,乙從乙口袋摸一球,摸出的兩球所標(biāo)數(shù)字之差(甲數(shù)字乙數(shù)字)大于0時甲勝,小于0時乙勝,等于0時平局.你認(rèn)為這個游戲規(guī)則對雙方公平嗎?請說明理由.若不公平,請你對本游戲設(shè)計一個對雙方都公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為一圓洞門.工匠在建造過程中需要一根橫梁AB和兩根對稱的立柱CEDF來支撐,點A、B、C、DO上,CEABE,DFABF,且AB2,EF,120°.

(1)求出圓洞門O的半徑;

(2)求立柱CE的長度.

查看答案和解析>>

同步練習(xí)冊答案