【題目】已知ABC 在平面直角坐標(biāo)系中的位置如圖(注: AB、C 均在格點上)

(1)請在圖中作出ABC 關(guān)于 y 軸對稱的A1B1C1 ,并直接寫出A1B1C1 頂點的坐標(biāo);

(2)求A1B1C1 的面積;

(3)再將A1B1C1 向下平移 4 個單位長度,得到A2 B2C2 ,若點 M m, n ABC 上一點,請直接寫出 M A2 B2C2 上對應(yīng)點 M 2 的坐標(biāo)。

【答案】1)A1(2,3),B1(3,2),C1(1,1);

(2);(3)(-m,n-4).

【解析】

1)作出點A,BC關(guān)于y軸的對稱點,再順次連接即可得;
2)根據(jù)割補法求三角形的面積公式計算可得;
3)根據(jù)平面直角坐標(biāo)系中點的對稱及平移變換的規(guī)律可得.

解:(1)如圖所示,△A1B1C1即為所求,

由圖知A1(2,3),B1(3,2),C1(1,1);

(2)△A1B1C1的面積為S矩形DC1FE-SA1C1D-SB1C1F-SA1B1E=2×2-×1×2-×1×2-×1×1=;

(3)M在△A2B2C2上對應(yīng)點M2的坐標(biāo)為(-m,n-4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD中,AB=6,BC=8,點E、F分別是BC、CD邊上的點,且AEEF,BE=2,

(1)求證:AE=EF;

(2)延長EF交矩形∠BCD的外角平分線CP于點P(圖2),試求AEEP的數(shù)量關(guān)系;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了美化環(huán)境,計劃在一定的時間內(nèi)完成綠化面積萬畝的任務(wù),后來市政府調(diào)整了原定計劃,不但綠化面積要在原計劃的基礎(chǔ)上增加,而且要提前年完成任務(wù),經(jīng)測算要完成新的計劃,平均每年的綠化面積必須比原計劃多萬畝,求原計劃平均每年的綠化面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線 :x軸,y軸的交點分別為A,B,直線 : y軸交于點C,直線與直線的交點為E,且點E的橫坐標(biāo)為2.

1)求實數(shù)b的值;

2)設(shè)點Da0)為x軸上的動點,過點Dx軸的垂線,分別交直線與直線于點MN,若以點BO、MN為頂點的四邊形是平行四邊形,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)教務(wù)處為了了解該校學(xué)生的課外體育活動情況,對學(xué)生進行了隨機的調(diào)查,分別從足球、籃球、乒乓球、羽毛球四個方面進行了匯總,然后將結(jié)果制成了如下的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中提供的信息,解答下列問題:

1)在這次調(diào)查中,一共調(diào)查了多少名學(xué)生?

2)在扇形統(tǒng)計圖中,乒乓球項目所對的圓心角是多少度?

3)請補充完整條形統(tǒng)計圖.

4)假如你是該校的一名學(xué)生,請你根據(jù)調(diào)查的結(jié)論,談?wù)剬τ谶\動場所配置的建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空并解答相關(guān)問題:

1)觀察下列數(shù)13,927,81…,發(fā)現(xiàn)從第二項開始,每一項除以前一項的結(jié)果是一個常數(shù),這個常數(shù)是________;根據(jù)此規(guī)律,如果an n為正整數(shù))表示這列數(shù)的第n項,那么an =__________

你能求出它們的和嗎?

計算方法:如果要求1+3+32+33+…+320的值,

可令S=1+3+32+33+…+320

將①式兩邊同乘以3,得3S=3+32+33+…+320+321

由②式左右兩邊分別減去①式左右兩邊,

3S-S=3+32+33+…+320+321)-(1+3+32+33+…+320),

2S=3211,兩邊同時除以2.

2)你能用類比的思想求1+6+62+63+…+6100的值嗎?寫出求解過程.

3)你能用類比的思想求1+m+m2+m3+…+mn(其中mn≠0m≠1)的值嗎?寫出求解過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)都在格點上,且△A1B1C1與△ABC關(guān)于原點O成中心對稱,C點坐標(biāo)為(-2,1)。

(1)請直接寫出A1的坐標(biāo)   ;并畫出△A1B1C1

(2)P(a,b)是△ABC的AC邊上一點,將△ABC平移后點P的對稱點P'(a+2,b﹣6),請畫出平移后的△A2B2C2

(3)若△A1B1C1和△A2B2C2關(guān)于某一點成中心對稱,則對稱中心的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是Rt△ABC斜邊BC上的高.

(1)尺規(guī)作圖:作∠C的平分線,交AB于點E,交AD于點F(不寫作法,必須保留作圖痕跡,標(biāo)上應(yīng)有的字母);

(2)在(1)的條件下,過F畫BC的平行線交AC于點H,線段FH與線段CH的數(shù)量關(guān)系如何?請予以證明;

(3)在(2)的條件下,連結(jié)DEDH.求證:ED⊥HD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線ykx+k2經(jīng)過點(m,n+1)和(m+12n+3),且﹣2k0,則n的取值范圍是(  )

A. 2n0B. 4n<﹣2C. 4n0D. 0n<﹣2

查看答案和解析>>

同步練習(xí)冊答案