【題目】興趣小組的同學(xué)要測量樹的高度.在陽光下,一名同學(xué)測得一根 長為 1 米的竹竿的影長為 0.4 米,同時另一名同學(xué)測量樹的高度時, 發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學(xué)樓的第一級臺 階水平面上,測得此影子長為 0.2 米,一級臺階高為 0.3 米,如圖 所示,若此時落在地面上的影長為 4.4 米,則樹高為( )
A.11.8 米B.11.75 米
C.12.3 米D.12.25 米
【答案】A
【解析】
在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.據(jù)此可構(gòu)造出相似三角形.
根據(jù)題意可構(gòu)造相似三角形模型如圖,
其中AB為樹高,EF為樹影在第一級臺階上的影長,BD為樹影在地上部分的長,ED的長為臺階高,并且由光沿直線傳播的性質(zhì)可知BC即為樹影在地上的全長;
延長FE交AB于G,則Rt△ABC∽Rt△AGF,
∴AG:GF=AB:BC=物高:影長=1:0.4
∴GF=0.4AG
又∵GF=GE+EF,BD=GE,GE=4.4m,EF=0.2m,
∴GF=4.6
∴AG=11.5
∴AB=AG+GB=11.8,即樹高為11.8米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC與BD相交于點O,∠BAD=90°,BO=DO,那么添加下列一個條件后,仍不能判定四邊形ABCD是矩形的是( )
A. ∠ABC=90°B. ∠BCD=90°C. AB=CDD. AB∥CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】歷史上對勾股定理的一種證法采用了如圖所示圖形,其中兩個全等的直角三角形邊AE,EB在一條直線上.證明中用到的面積相等關(guān)系是 ( )
A. S△EDA=S△CEB
B. S△EDA +S△CEB=S△CDB
C. S四邊形CDAE= S四邊形CDEB
D. S△EDA+S△CDE+S△CEB= S四邊形ABCD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)如圖,直線y=﹣x+6分別與x軸、y軸交于A、B兩點;直線y=x與AB交于點C,與過點A且平行于y軸的直線交于點D.點E從點A出發(fā),以每秒1個單位的速度沿x軸向左運動.過點E作x軸的垂線,分別交直線AB、OD于P、Q兩點,以PQ為邊向右作正方形PQMN.設(shè)正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點E的運動時間為t(秒).
(1)求點C的坐標(biāo).
(2)當(dāng)0<t<5時,求S與t之間的函數(shù)關(guān)系式,并求S的最大值。
(3)當(dāng)t>0時,直接寫出點(5,3)在正方形PQMN內(nèi)部時t的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC⊥BD時,它是菱形
C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點C是線段AB的中點
(1)如圖,若點D在線段CB上,且BD=1.5厘米,AD=6.5厘米,求線段CD的長度;
(2)若將(1)中的“點D在線段CB上”改為“點D在線段CB的延長線上”,其他條件不變,請畫出相應(yīng)的示意圖,并求出此時線段CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在平面直角坐標(biāo)系xOy中,點A、B、C分別為坐標(biāo)軸上上的三個點,且OA=1,OB=3,OC=4,
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)在平面直角坐標(biāo)系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;
(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當(dāng)|PM﹣AM|的最大值時點M的坐標(biāo),并直接寫出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在數(shù)學(xué)活動課上,將邊長為和3的兩個正方形放置在直線l上,如圖a,他連接AD、CF,經(jīng)測量發(fā)現(xiàn)AD=CF.
(1)他將正方形ODEF繞O點逆時針針旋轉(zhuǎn)一定的角度,如圖b,試判斷AD與CF還相等嗎?說明理由.
(2)他將正方形ODEF繞O點逆時針旋轉(zhuǎn),使點E旋轉(zhuǎn)至直線l上,如圖c,請求出CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知△ABC的三個頂點坐標(biāo)分別為A(1,3)、B(4,2)、C(3,4).
(1)將△ABC沿水平方向向左平移4個單位得△A1B1C1,請畫出△A1B1C1;
(2)畫出△ABC關(guān)于原點O成中心對稱的△A2B2C2;
(3)若△A1B1C1與△A2B2C2關(guān)于點P成中心對稱,則點P的坐標(biāo)是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com