【題目】如圖,已知,以為直徑,為圓心的半圓交于點,點為弧的中點,連接交于點,為的角平分線,且,垂足為點.判斷直線與的位置關(guān)系,并說明理由;
【答案】AB是圓O的切線.理由見解析;
【解析】
連接CE,推出AD∥CE,得出∠ECM=∠DAC=∠DAB=∠EBC,根據(jù)∠AHB=90°推出∠DAB+ ABE=90°.代入推出∠ABE+∠EBC=90°,根據(jù)切線的判定推出即可;
直線AB與O的位置關(guān)系是相切,
理由是:連接CE,
∵BC為直徑,
∴∠BEC=90°,
∵AD⊥BE,
∴AD∥EC,
∴∠ACE=∠CAD,
∵弧EF=弧CE,
∴∠FCE=∠CBE,
∴∠CAD=∠CBE,
∵AD平分∠BAC,
∴∠CAD=∠BAD,
∴∠CBE=∠BAD,
∴∠BAD+∠ABE=90°,
∴∠CBE+∠ABE=90°,
即∠ABC=90°,
又∵AB經(jīng)過直徑的外端,
∴AB是圓O的切線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(0,1)、點B(0,1+t)、C(0,1﹣t)(t>0),點P在以D(3,5)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則t的最小值是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE.
求證:(1)∠CEB=∠CBE;
(2)四邊形BCED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系.
小吳同學(xué)探究此問題的思路是:將△BCD繞點D,逆時針旋轉(zhuǎn)90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD.
簡單應(yīng)用:
(1)在圖①中,若AC=2,BC=4,則CD= .
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上,弧AD=弧BD,若AB=13,BC=12,求CD的長.
拓展規(guī)律:
(3)如圖4,△ABC中,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE=AC,CE=CA,且點E在直線AC的左側(cè)時,點Q為AE的中點,則線段PQ與AC的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=x2-2|x|的圖象和性質(zhì)進行了探究,探究過程如下:
(1)自變量x的取值范圍是 ,x與y的幾組對應(yīng)值列表如下:
x | … | -3 | - | -2 | -1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | 0 | -1 | 0 | -1 | 0 | 3 | … |
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出了函數(shù)圖象的一部分,請畫出該圖象的另一部分并觀察函數(shù)圖象,寫出該函數(shù)的兩條性質(zhì).
(3)進一步探究函數(shù)圖象發(fā)現(xiàn):關(guān)于x的方程2x2-4|x|=a有4個實數(shù)根,則a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,.
(1)點從點開始沿邊向以的速度移動,點從點開始沿邊向點以的速度移動.如果點,分別從,同時出發(fā),經(jīng)過幾秒,的面積等于?
(2)點從點開始沿邊向點以的速度移動,點從點開始沿邊向點以的速度移動.如果點,分別從,同時出發(fā),線段能否將分成面積相等的兩部分?若能,求出運動時間;若不能,請說明理由.
(3)若點沿線段方向從點出發(fā)以的速度向點移動,點沿射線方向從點出發(fā)以的速度移動,,同時出發(fā),問幾秒后,的面積為?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com